特征重要性评估方法
例如,在特征选择中,通过评估特征的重要性,我们可以确定哪些特征对分类准确性影响较大,从而进行特征选择,提高模型的效果和效率。在特征工程中,特征重要性评估可以帮助我们了解各个特征对分类的贡献度,进而指导我们在特征工程中的选择和处理。这些方法通过优化模型的损失函数,同时约束特征的系数大小,从而选择对目标变量有更大影响的特征。决策树算法(如随机森林和梯度提升树):这些算法可以通过计算每个特征在树中的节点分裂中所带来的纯度提升(或信息增益)来评估特征的重要性。通常我们需要对减少特征数量,挑选出主要的特征。







