beautygenius
码龄1年
关注
提问 私信
  • 博客:1,947
    1,947
    总访问量
  • 4
    原创
  • 230,661
    排名
  • 22
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2024-02-28
博客简介:

beautygenius的博客

查看详细资料
  • 原力等级
    当前等级
    1
    当前总分
    42
    当月
    0
个人成就
  • 获得30次点赞
  • 内容获得0次评论
  • 获得19次收藏
创作历程
  • 4篇
    2024年
成就勋章
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

特征重要性评估方法

例如,在特征选择中,通过评估特征的重要性,我们可以确定哪些特征对分类准确性影响较大,从而进行特征选择,提高模型的效果和效率。在特征工程中,特征重要性评估可以帮助我们了解各个特征对分类的贡献度,进而指导我们在特征工程中的选择和处理。这些方法通过优化模型的损失函数,同时约束特征的系数大小,从而选择对目标变量有更大影响的特征。决策树算法(如随机森林和梯度提升树):这些算法可以通过计算每个特征在树中的节点分裂中所带来的纯度提升(或信息增益)来评估特征的重要性。通常我们需要对减少特征数量,挑选出主要的特征。
原创
发布博客 2024.06.20 ·
552 阅读 ·
11 点赞 ·
0 评论 ·
6 收藏

机器学习基础项目流程(详细解释)

所谓机器学习,就是将数据载入计算机中,通过一系列操作让计算机对数据进行学习,积累经验,从而能够独立完成目标预测的过程。在独立完成项目的时候,我们要注意该项目的各项需求,在这里把它分成两种:功能性需求,非功能性需求。对于功能性需求就需要我们逐个去想办法实现,对于非功能性需求我们可以把他放在项目完成的最后,进行美化。拿到数据后,因为其中肯能会有缺失值、空值、异常值,这里称为‘脏数据’,所以我们要对其进行处理,这一步就叫数据清洗。项目最后一步:验证得分 模型打包 连接服务器 项目结束。
原创
发布博客 2024.06.19 ·
228 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

几种线性回归的区别LinearRegression、Ridge、SGDRegressor和Lasso

总结来说,LinearRegression、Ridge、SGDRegressor和Lasso都是线性回归模型,但它们在处理多重共线性、特征选择和计算效率方面有所不同。LinearRegression、Ridge、SGDRegressor和Lasso在统计学和机器学习中都是用于线性回归的模型,但它们之间存在一些关键的区别。与Ridge不同,Lasso不仅会使模型参数估计更加稳定,而且具有“子集选择”的特性,即可以将一些不重要的参数压缩到零,从而实现特征选择。这是最基本的线性回归模型,基于最小二乘法进行建模。
原创
发布博客 2024.06.19 ·
769 阅读 ·
13 点赞 ·
0 评论 ·
13 收藏

新手干货1--random函数

比较输入数字和随机数字的大小,如果输入‘q’(这里只做一个距离,无实际意义),则显示输入错误退出循环。num1 = random.randint(1,100)#计算机随机生成的1-100。# random.choices(string,‘长度’))num = input('请输入一个数字')#我输入的。# random.sample(string,‘长度’)在多个元素中 随机打乱输出‘长度’个元素(可重复)在多个元素中 随机打乱输出‘长度’个元素(不重复)print('我大')print('输入错误')
原创
发布博客 2024.02.28 ·
399 阅读 ·
5 点赞 ·
0 评论 ·
0 收藏