题目大意,货币之间对兑换,如果起始有 1 美元,1美元=0.5英镑 1英镑=10法郎,1法郎=0.21 美元。经过交换 能够得到 1*0.5*10*0.21=1.05 美元,问给定货币和汇率,能够实现上述操作
分析:我们把乘法两边取对数,就变成 lg0.5+lg10+lg0.21>lg 1=0的情况,如果我们给每个参数都取上负数的话,就变成了最短路问是否存在负环
#include <bits/stdc++.h>
#define cl(arr) memset(arr,0,sizeof(arr))
#define fl(arr,val) memset(arr,val,sizeof(arr))
using namespace std;
const int maxn=1e5+50;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
typedef pair<int,int>PII;
typedef long long ll;
map <string,int>mp;
int n;
struct edge
{
int to;
double cost;
edge(int v,double w):to(v),cost(w){}
};
vector<edge>E[maxn];
void addedge(int u,int v,double c)
{
E[u].push_back(edge(v,c));
}
double d[100];
int cnt[maxn];
bool dijkstra()
{
for(int i=0;i<100;i++)
{
d[i]=1e18;
}
priority_queue<PII,vector<PII>,greater<PII> >q;
d[1]=0;
q.push(PII(0,1));
cnt[1]++;
while(!q.empty())
{
PII x=q.top();
q.pop();
double cost=x.first;
int u=x.second;
for(int i=0;i<E[u].size();i++)
{
int v=E[u][i].to;
double w=E[u][i].cost;
if(d[v]>d[u]+w)
{
d[v]=d[u]+w;
q.push(PII(d[v],v));
cnt[v]++;
}
if(cnt[v]>n)return true;
}
}
return false;
}
int main()
{
int Case=1;
int p=0;
while(~scanf("%d",&n)&&n)
{
for(int i=1;i<105;i++)
{
E[i].clear();
}
cl(cnt);
mp.clear();
int index=0;
for(int i=1;i<=n;i++)
{
string s;
cin>>s;
mp[s]=++index;
}
int m;
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
string a,b;
double t;
cin>>a>>t>>b;
int u=mp[a];
int v=mp[b];
t= -log10(t);
addedge(u,v,t);
}
if(dijkstra())
{
printf("Case %d: Yes\n",++p);
}
else
{
printf("Case %d: No\n",++p);
}
}
return 0;
}