自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 Identity-Guided Human Semantic Parsing for Person Re-Identification分析

Identity-Guided Human Semantic Parsing for Person Re-Identification摘要现有的基于对齐的方法必须采用预先训练的人体解析模型来实现像素级对齐,并且无法识别对行人重新识别至关重要的个人物品(例如背包和标线)。在本文中,我们提出了身份引导的人类语义解析方法(ISP),在像素级定位人体部位和个人物品,以便仅使用人员身份标签对齐人员重新识别。我们设计了特征图上的级联聚类来生成人体部位的伪标签。具体来说,对于一个人的所有图像的像素,我们首先将它们分组

2021-10-13 08:43:36 736

原创 Matching on Sets: Conquer Occluded Person Re-Identification Without Alignment论文分析

Matching on Sets: Conquer Occluded Person Re-Identification Without Alignment摘要被遮挡的人重新识别 (re-ID) 是一项具有挑战性的任务,因为在杂乱的场景中,不同的人体部分可能会变得不可见,从而难以匹配不同身份的人图像。大多数现有方法通过根据语义信息(例如人体姿势)或特征相似性对齐身体部位的空间特征来解决这一挑战,但这种方法复杂且对噪声敏感。本文介绍了集合匹配 (MoS),这是一种将被遮挡的人重新识别定位为集合匹配任务而不需

2021-10-11 21:35:48 883

转载 AlignedReID(转载自魏大明白)

很易懂的行人重识别解读多任务模型对于菜鸡来说是很好的炼丹方向,AlignedReID是早期的多任务模型,作为入门是个不错的选择,本文转载魏大明白的文章,做个文章归纳,主要是自己看的更轻松点。0.alignedreid论文解析训练阶段共有两个分支,其中局部分支使用最短路径损失来对其局部。测试阶段,只是用全局特征,忽略局部特征,因为实验发现单用global feature和联合两个特征效果相差不大。1.从零开始AlignedReID_01数据集的加载重构data_loader库数据采样2.

2021-10-09 14:35:05 465

原创 算法总览-python-leetcode

算法分门别类LeetCode的编写注释复杂,所以在CSDN上另开一版。编程语言主要以python为主,没有使用C++编程是因为后期没有打算选择算法这个岗位。链表

2021-10-08 17:23:27 122

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除