暑期SMALE魔鬼训练day1

暑期SMALE魔鬼训练day1

上午:
1、描述你在学习、使用数学表达式时的困难, 可举例说明.
答:由于之前接触的数学理论相关的知识相对较少,目前的学习困难主要集中在数学表达式的理解,以及数学符号的应用。可能看见一个数学表达式能明白其中的意思,但是要自己用数学语言复现出来就还有点难度

中午:
2、
A = { 3 , 5 } \mathbf{A} = \{3, 5\} A={3,5},写出 2 A 2^\mathbf{A} 2A
答: A = { 3 , 5 } \mathbf{A} = \{3, 5\} A={3,5},则 2 A = { ∅ , { 3 } , { 5 } , { 3 , 5 } } 2^\mathbf{A} = \{\emptyset, \{3\}, \{5\}, \{3, 5\}\} 2A={,{3},{5},{3,5}}

展开 2 ∅ 2^\emptyset 2
答: 2 ∅ = { ∅ } 2^\emptyset = \{\emptyset\} 2={}

A = { 5 , 6 , 7 , 8 , 9 } \mathbf{A} = \{5, 6, 7, 8, 9\} A={5,6,7,8,9}, 写出 A \mathbf{A} A 的其它两种表示法.
答:
简记1 A = [ 5..9 ] = { 5 , 6 , … , 9 } \mathbf{A} = [5..9] = \{5, 6,\dots, 9\} A=[5..9]={5,6,,9}
简记2 A = { x ∈ N ∣ 5 ≤ x ≤ 9 } \mathbf{A} = \{x \in \mathbb{N} \vert 5 \le x \le 9\} A={xN5x9}

晚上:
3、自己出数据, 做一个 3 × 2 3 \times 2 3×2 2 × 4 2 \times 4 2×4 的矩阵乘法.

C = A B \mathbf{C} = \mathbf{A}\mathbf{B} C=AB
= [ 1 3 2 4 1 2 ] × [ 1 2 3 4 2 4 6 8 ] = [ 7 14 21 28 10 20 30 40 5 10 15 20 ] =\left[\begin{matrix} 1 & 3 \\ 2 & 4\\ 1 & 2\\ \end{matrix}\right]\times\left[\begin{matrix} 1 & 2 & 3 & 4\\ 2 & 4 & 6 & 8\\ \end{matrix}\right] = \left[\begin{matrix} 7 & 14 & 21 & 28\\ 10 & 20 & 30 & 40\\ 5 & 10 & 15 & 20 \end{matrix}\right] =121342×[12243648]=7105142010213015284020

仿写闵老师CSDN博客:
A = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } \mathbf{A} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} A={0,1,2,3,4,5,6,7,8,9}, 这里的 A \mathbf{A} A是采用的 \mathbf 且大写表示集合,在latex中用$$围起来,如果用$$$$就表示单独成一行,\{\}显示出花括号,不加\不显示,如果要表示大的花括号需要写成\left{\right}。
N = { 0 , 1 , 2 , …   } \mathbb{N} = \{0, 1, 2, \dots\} N={0,1,2,}, 这里的 N \mathbb{N} N字体是 \mathbb, 省略号写成 \dots 要是两个点的省略号直接打。
Ω = { a , b , … , z } \mathbf{\Omega} = \{\textrm{a}, \textrm{b}, \dots, \textrm{z}\} Ω={a,b,,z}, 花括号的内容是字母,不是变量,所以写成非斜体\mathbf。
向量要写成粗体 x \mathbf{x} x,采用的是\mathbf。
X = { x i } i = 1 n = { x 1 , x 2 , … , x n } \mathbf{X} = \{x_i\}_{i = 1}^n = \{x_1, x_2, \dots, x_n\} X={xi}i=1n={x1,x2,,xn}, 下标之前加_, 上标之前加^,如果上下标内容非单一字符要加{},表示是一个整体。
∣ | 的表示方法:(1)直接键盘输入| (2)\vert
∥ \| 的表示方法:(1) 直接键盘输入|| (2)\| (3)\Vert
空集 ∅ \emptyset ,\emptyset
全集 U \mathbf{U} U

x ∈ X x \in \mathbf{X} xX, 属于用\in
A ⊆ B \mathbf{A} \subseteq \mathbf{B} AB, 子集 ⊂ \subset 用 \subset, 真子集 ⊆ \subseteq 用 \subseteq
X ∪ Y \mathbf{X} \cup \mathbf{Y} XY, 并符号\cup
⋃ i = 1 n X i \bigcup_{i = 1}^n \mathbf{X}_i i=1nXi, 表示合集的并用\bigcup
∑ i = 1 n i = 1 + 2 + ⋯ + n = n ( n + 1 ) 2 \sum_{i = 1}^n i = 1 + 2 + \dots + n = \frac{n (n + 1)}{2} i=1ni=1+2++n=2n(n+1), 求和符号 \sum
X ∩ Y \mathbf{X} \cap \mathbf{Y} XY,符号\cap
⋂ i = 1 n X i \bigcap_{i = 1}^n \mathbf{X}_i i=1nXi,合集的交\bigcap
合集的差: X ∖ Y \mathbf{X} \setminus \mathbf{Y} XY,符号\setminus
幂集 A = { 0 , 1 , 2 } , 则 2 A = { ∅ , { 0 } , { 1 } , { 2 } , { 0 , 1 } , { 0 , 2 } , { 1 , 3 } , { 0 , 1 , 2 } } \mathbf{A}=\{0,1,2\}, 则 2^\mathbf{A}= \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 3\}, \{0, 1, 2\}\} A={0,1,2},2A={,{0},{1},{2},{0,1},{0,2},{1,3},{0,1,2}}
笛卡尔积: A × B = { ( a , b ) ∣ a ∈ A , b ∈ B } \mathbf{A} \times \mathbf{B} = \{(a, b) \vert a \in \mathbf{A}, b \in \mathbf{B}\} A×B={(a,b)aA,bB}
A × B ≠ B × A \mathbf{A} \times \mathbf{B} \ne \mathbf{B} \times \mathbf{A} A×B=B×A, \ne 表示not equal

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值