暑期SMALE魔鬼训练day1
上午:
1、描述你在学习、使用数学表达式时的困难, 可举例说明.
答:由于之前接触的数学理论相关的知识相对较少,目前的学习困难主要集中在数学表达式的理解,以及数学符号的应用。可能看见一个数学表达式能明白其中的意思,但是要自己用数学语言复现出来就还有点难度
中午:
2、
令
A
=
{
3
,
5
}
\mathbf{A} = \{3, 5\}
A={3,5},写出
2
A
2^\mathbf{A}
2A
答:
A
=
{
3
,
5
}
\mathbf{A} = \{3, 5\}
A={3,5},则
2
A
=
{
∅
,
{
3
}
,
{
5
}
,
{
3
,
5
}
}
2^\mathbf{A} = \{\emptyset, \{3\}, \{5\}, \{3, 5\}\}
2A={∅,{3},{5},{3,5}}
展开
2
∅
2^\emptyset
2∅
答:
2
∅
=
{
∅
}
2^\emptyset = \{\emptyset\}
2∅={∅}
令
A
=
{
5
,
6
,
7
,
8
,
9
}
\mathbf{A} = \{5, 6, 7, 8, 9\}
A={5,6,7,8,9}, 写出
A
\mathbf{A}
A 的其它两种表示法.
答:
简记1
A
=
[
5..9
]
=
{
5
,
6
,
…
,
9
}
\mathbf{A} = [5..9] = \{5, 6,\dots, 9\}
A=[5..9]={5,6,…,9}
简记2
A
=
{
x
∈
N
∣
5
≤
x
≤
9
}
\mathbf{A} = \{x \in \mathbb{N} \vert 5 \le x \le 9\}
A={x∈N∣5≤x≤9}
晚上:
3、自己出数据, 做一个
3
×
2
3 \times 2
3×2与
2
×
4
2 \times 4
2×4 的矩阵乘法.
C
=
A
B
\mathbf{C} = \mathbf{A}\mathbf{B}
C=AB
=
[
1
3
2
4
1
2
]
×
[
1
2
3
4
2
4
6
8
]
=
[
7
14
21
28
10
20
30
40
5
10
15
20
]
=\left[\begin{matrix} 1 & 3 \\ 2 & 4\\ 1 & 2\\ \end{matrix}\right]\times\left[\begin{matrix} 1 & 2 & 3 & 4\\ 2 & 4 & 6 & 8\\ \end{matrix}\right] = \left[\begin{matrix} 7 & 14 & 21 & 28\\ 10 & 20 & 30 & 40\\ 5 & 10 & 15 & 20 \end{matrix}\right]
=⎣⎡121342⎦⎤×[12243648]=⎣⎡7105142010213015284020⎦⎤
仿写闵老师CSDN博客:
A
=
{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
}
\mathbf{A} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
A={0,1,2,3,4,5,6,7,8,9}, 这里的
A
\mathbf{A}
A是采用的 \mathbf 且大写表示集合,在latex中用$$围起来,如果用$$$$就表示单独成一行,\{\}显示出花括号,不加\不显示,如果要表示大的花括号需要写成\left{\right}。
N
=
{
0
,
1
,
2
,
…
}
\mathbb{N} = \{0, 1, 2, \dots\}
N={0,1,2,…}, 这里的
N
\mathbb{N}
N字体是 \mathbb, 省略号写成 \dots 要是两个点的省略号直接打。
Ω
=
{
a
,
b
,
…
,
z
}
\mathbf{\Omega} = \{\textrm{a}, \textrm{b}, \dots, \textrm{z}\}
Ω={a,b,…,z}, 花括号的内容是字母,不是变量,所以写成非斜体\mathbf。
向量要写成粗体
x
\mathbf{x}
x,采用的是\mathbf。
X
=
{
x
i
}
i
=
1
n
=
{
x
1
,
x
2
,
…
,
x
n
}
\mathbf{X} = \{x_i\}_{i = 1}^n = \{x_1, x_2, \dots, x_n\}
X={xi}i=1n={x1,x2,…,xn}, 下标之前加_, 上标之前加^,如果上下标内容非单一字符要加{},表示是一个整体。
∣
|
∣的表示方法:(1)直接键盘输入| (2)\vert
∥
\|
∥的表示方法:(1) 直接键盘输入|| (2)\| (3)\Vert
空集
∅
\emptyset
∅,\emptyset
全集
U
\mathbf{U}
U
x
∈
X
x \in \mathbf{X}
x∈X, 属于用\in
A
⊆
B
\mathbf{A} \subseteq \mathbf{B}
A⊆B, 子集
⊂
\subset
⊂用 \subset, 真子集
⊆
\subseteq
⊆用 \subseteq
并
X
∪
Y
\mathbf{X} \cup \mathbf{Y}
X∪Y, 并符号\cup
⋃
i
=
1
n
X
i
\bigcup_{i = 1}^n \mathbf{X}_i
⋃i=1nXi, 表示合集的并用\bigcup
∑
i
=
1
n
i
=
1
+
2
+
⋯
+
n
=
n
(
n
+
1
)
2
\sum_{i = 1}^n i = 1 + 2 + \dots + n = \frac{n (n + 1)}{2}
∑i=1ni=1+2+⋯+n=2n(n+1), 求和符号 \sum
交
X
∩
Y
\mathbf{X} \cap \mathbf{Y}
X∩Y,符号\cap
⋂
i
=
1
n
X
i
\bigcap_{i = 1}^n \mathbf{X}_i
⋂i=1nXi,合集的交\bigcap
合集的差:
X
∖
Y
\mathbf{X} \setminus \mathbf{Y}
X∖Y,符号\setminus
幂集
A
=
{
0
,
1
,
2
}
,
则
2
A
=
{
∅
,
{
0
}
,
{
1
}
,
{
2
}
,
{
0
,
1
}
,
{
0
,
2
}
,
{
1
,
3
}
,
{
0
,
1
,
2
}
}
\mathbf{A}=\{0,1,2\}, 则 2^\mathbf{A}= \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 3\}, \{0, 1, 2\}\}
A={0,1,2},则2A={∅,{0},{1},{2},{0,1},{0,2},{1,3},{0,1,2}}
笛卡尔积:
A
×
B
=
{
(
a
,
b
)
∣
a
∈
A
,
b
∈
B
}
\mathbf{A} \times \mathbf{B} = \{(a, b) \vert a \in \mathbf{A}, b \in \mathbf{B}\}
A×B={(a,b)∣a∈A,b∈B}
A
×
B
≠
B
×
A
\mathbf{A} \times \mathbf{B} \ne \mathbf{B} \times \mathbf{A}
A×B=B×A, \ne 表示not equal