概念
函数式编程就是,把函数本身作为参数传入另一个函数,并且允许返回一个函数。
1.高阶函数
1.map
map()
函数接收两个参数,一个是函数,一个是Iterable
,map
将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator
返回。
>>> def f(x):
... return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
2.reduce
reduce
把一个函数作用在一个序列[x1, x2, x3, ...]
上,这个函数必须接收两个参数,reduce
把结果继续和序列的下一个元素做累积计算。
>>> from functools import reduce
>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25
3.filter
filter()
把传入的函数依次作用于每个元素,然后根据返回值是True
还是False
决定保留还是丢弃该元素。
def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]
4.sorted
Python内置的sorted()
函数就可以对list进行排序:
>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]
list自带的sort()可以排序,但是无返回。
>>> a=[3,2,1]
>>> a.sort()
>>> a
[1, 2, 3]
此外,sorted()
函数也是一个高阶函数,它还可以接收一个key
函数来实现自定义的排序,例如按绝对值大小排序:
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
字典排序
>>> a={'a':2,'c':3,'b':1}
>>> sorted(a.items(),key=lambda x:x[0])
[('a', 2), ('b', 1), ('c', 3)]
2.匿名函数(lambda)
使用场景:
1.不用起函数名字
2.功能简单
例子:
>>> f = lambda x: x * x
>>> f
<function <lambda> at 0x101c6ef28>
>>> f(5)
25