吴恩达机器学习课程笔记(一)

吴恩达机器学习课程笔记

链接: https://www.bilibili.com/video/BV164411b7dx?p=2&spm_id_from=pageDriver.

什么是机器学习

Tom Mitchell在1997年提出的“ETP定义”:A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

E:Experience,经验

T:Task,任务

P:Performance measure,性能测度

从E来提高做T的P

重点:学习怎么使用正确机器学习算法 来完成任务

学习算法中主要的两类:

  • supevised learning 监督学习 (教计算机学习)
  • unsupervised learning (让计算机自己学习)

其他类型:

  • reinforcement learmning 强化学习
  • recommender systems 推荐系统

监督学习

每个例子都有正确的答案

  • 分类问题

    告诉计算机什么是0 和 1 然后给一个数据 告诉你这个是是0还是1

  • 回归问题

    eg:分析不同地区 卖房 可以卖到多少钱

无监督学习

给一个数据集 它没有标签或者标签相同 其中之一 聚类算法 计算器自动分类

eg:谷歌新闻页面 组合新闻链接

eg:从录音中分离 不同的人声 或者分离伴奏和人声

octave—科学计算软件

模型描述

  • 一个训练集
  • 训练数
  • 特征 给的值
  • 目标值

预测房价的例子 :

image-20211108210406083

预测房价的例子 :监督学习—线性回归

一行就是一个训练样本

x^1 y^1 这里1 指的是索引

得出的结果 就是叫假设函数

代价函数

20211108214222

假设函数,参数,代价函数,优化目标:

image-20211108222305107

  1. 简化了房价的例子的参数 只有一个斜率参数θ1

image-20211108221850671

  1. 两个参数 都有:

image-20211108223437244

image-20211108223446980

(图A)一个参数 和两个参数的 代价函数

image-20211108223454288

代价函数画成 等高线图后的样子 一个点 代表一个h(x) 假设函数

椭圆的“同心点” 拟合程度较高

我们需要软件来帮助我们找到最低点和对应的θ1和θ0

梯度下降法

  1. 梯度下降法来最小化任意函数:

image-20211108225451754

不同的起始点 找到的最低点可能不同(一般不是这样 应该是一个函数 像上面图一)

image-20211109172655125

  1. 梯度下降算法

image-20211109172327978

“正确的梯度下降要同步更新 右侧是不正确的"

image-20211109175015782

image-20211109175310119

  1. α是控制下降速率
  • α小的话 下降比较慢

  • α大的话 可能导致找不到最小点或者发散

算法中的导数项 通俗地说是开控制下降的方向

导数项 是慢慢减小的 最后是0 所以梯度下降将自动采取较小的幅度

整合模型和算法下·

  1. image-20211109183608749

    右的线性回归模型 带入梯度算法中 导数项和代价函数如下图

image-20211109183657678

不断重复下面

image-20211109185810332

上面的方法是全览了整个训练集 的梯度下降 所以它又叫”batch“算法

(还有没有全览了整个训练集的算法)

总结

假设函数:设的符合观测值的模型
代价函数:度量模型与观测值的差
梯度下降算法:找到代价函数的最小点即确定出假设函数的参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值