学习
飞剑客阿飞
这个作者很懒,什么都没留下…
展开
-
PRML第一章读书小结
PRML第一章读书小结 第一章用例子出发,较为简单的引入了概率论、模型、决策、损失、信息论的问题,作为机器学习从业者,读PRML除了巩固已有基础,还受到了很多新的启发,下面将我收到的启发总结如下。1. 多项式曲线拟合问题多项式拟合问题作为全书的第一个引例,通过此说明了很多关键的概念。给定一个训练集,训练集由$x$的N次观测组成,记作$math...原创 2019-12-29 15:35:28 · 896 阅读 · 0 评论 -
PRML第一章读书小结
PRML第一章读书小结 第一章用例子出发,较为简单的引入了概率论、模型、决策、损失、信息论的问题,作为机器学习从业者,读PRML除了巩固已有基础,还受到了很多新的启发,下面将我收到的启发总结如下。1. 多项式曲线拟合问题多项式拟合问题作为全书的第一个引例,通过此说明了很多关键的概念。给定一个训练集,训练集由$x$的N次观测组成,记作$math...原创 2019-12-29 15:33:29 · 194 阅读 · 0 评论 -
强化学习简介及马尔科夫决策过程
1. 什么是强化学习 强化学习(reinforcement learning, RL)是近年来大家提的非常多的一个概念,那么,什么叫强化学习? 强化学习是机器学习的一个分支,和监督学习,非监督学习并列。 参考文献[1]中给出了定义:Reinforcement learning is learning what to do ...原创 2019-11-12 22:05:09 · 1092 阅读 · 0 评论 -
强化学习简介及马尔科夫决策过程
强化学习分享陈迪 用户策略部 2019年11月12日1. 什么是强化学习 强化学习(reinforcement learning, RL)是近年来大家提的非常多的一个概念,那么,什么叫强化学习? 强化学习是机器学习的一个分支,和监督学习,非监督学习并列。 参考文献[1]中给出了定义:Reinforcement lear...原创 2019-11-12 21:50:44 · 312 阅读 · 0 评论 -
论文研读:基于统计重加权的方法减少通用回复
论文研读:基于统计重加权的方法减少通用回复会议名称:EMNLP2018文章题目:Towards Less Generic Responses in Neural Conversation Models: A Statistical Re-weighting Method原文链接:https://link.zhihu.com/?target=https://www.paperweekly.si...原创 2019-10-23 21:20:31 · 991 阅读 · 0 评论 -
复杂模型可解释性方法——LIME
一、模型可解释性 近年来,机器学习(深度学习)取得了一系列骄人战绩,但是其模型的深度和复杂度远远超出了人类理解的范畴,或者称之为黑盒(机器是否同样不能理解?),当一个机器学习模型泛化性能很好时,我们可以通过交叉验证验证其准确性,并将其应用在生产环境中,但是很难去解释这个模型为什么会做出此种预测,是基于什么样的考虑?作为机器学习从业者很容易想清楚为什么...原创 2019-10-17 22:15:33 · 3659 阅读 · 0 评论 -
局部敏感哈希LSH(Locality-Sensitive Hashing)——海量数据相似性查找技术
一、 前言 最近在工作中需要对海量数据进行相似性查找,即对微博全量用户进行关注相似度计算,计算得到每个用户关注相似度最高的TOP-N个用户,首先想到的是利用简单的协同过滤,先定义相似性度量(cos,Pearson,Jaccard),然后利用通过两两计算相似度,计算top-n进行筛选,这种方法的时间复杂度为$O(n^2)$(对于每个用户,都和其他任意一...原创 2019-10-17 21:54:18 · 1303 阅读 · 0 评论 -
markdown公式转为知乎格式
在知乎中写技术类文章,经常会用到markdown知乎文章可以导入markdown格式,但是不支持Latex公式。知乎大神提供了替代方案: https://zhuanlan.zhihu.com/p/69142198替换为:nn查找目标:$n*(.*?)n*$替换为:nn 为实现自动化,用py...原创 2019-10-17 15:26:51 · 1159 阅读 · 0 评论 -
极大似然小结
在机器学习中,我们经常要利用极大似然法近似数据整体的分布,本篇文章通过介绍极大似然法及其一些性质,旨在深入浅出地解释清楚极大似然法。首先看一下经典的贝叶斯公式:$$p(Y|X)=frac{p(X|Y)p(Y)}{p(X)}$$其中,$p(Y)$称为先验概率($prior$),即根据先验知识得出的关于变量$Y$的分布,$p(X|Y)$称为似然函数($likelihood$),$p(X)$为变...原创 2019-10-14 00:01:51 · 991 阅读 · 0 评论 -
《Java从入门到精通读后感》
本科期间学过C,自学了一段时间C++却对其不甚了解(尤其是指针)的我,由于种种原因,对JAVA甚是好奇,机缘巧合下得到了这本书,随后决心自行修读一遍,用时55天,总算将此书读完,在此记录一下这一个多月来对此书的看法。在我看来《Java从入门到精通》一书对于基本语法描述的较为清晰,实例较多(虽然实例多有瑕疵、错误),对于入门打基础来说前几章内容的确是不可多得的详尽。但是基础知识介绍完后,在核心技原创 2016-10-25 15:24:19 · 5348 阅读 · 0 评论