分布式幂等--银弹

AgenticCoding·十二月创作之星挑战赛 10w+人浏览 437人参与

“银弹”是一个在技术领域(特别是软件工程)非常经典且常用的比喻。

一、字面与比喻含义

字面意思:指传说中能杀死狼人、吸血鬼等超自然生物的子弹,通常由白银制成。它代表了能一举解决某个可怕难题的 “终极武器”

在技术和工程领域的比喻含义

“银弹”指代一种能神奇地、一劳永逸地解决某个复杂领域所有根本性难题的单一技术、方法或工具。

二、出处与背景

这个词的流行,主要归功于弗雷德·布鲁克斯在1986年发表的著名论文《No Silver Bullet — Essence and Accidents of Software Engineering》(没有银弹​ — 软件工程的本质性与偶然性)。

他的核心观点是:

软件开发中存在的困难可以分为两类:

  1. 本质性困难:软件本身概念结构复杂、必须满足的复杂需求、难以规避的变更等。这些是内在的、固有的困难。

  2. 偶然性困难:在实现过程中产生的问题,如编程语言效率低、工具不好用等。这些是外在的、次要的困难。

布鲁克斯认为,过去几十年(直到他写文章时)的进步(高级语言、面向对象、Unix、IDE等)主要解决了“偶然性困难”,从而极大地提升了生产力。但是,对于“本质性困难”,并没有出现,并且在可预见的未来也不会出现任何单一的“银弹”能将其彻底消灭。

三、在技术讨论中的用法

当你听到有人说 “XX 不是银弹” 或 “我们在寻找银弹” 时,通常意味着:

  • “XX不是银弹”:提醒大家不要过度神化某项技术(例如:微服务、中台、区块链、低代码、AIGC、某个新框架或语言)。它可能在某些场景下非常有效,但不能解决所有问题,甚至会带来新的复杂性(例如微服务带来的运维、分布式事务的复杂性)。

  • “没有银弹”:强调复杂问题需要综合性的解决方案、持续的工程努力、良好的设计和团队协作,而不是幻想找到一种神奇的技术就能轻松搞定。

  • 一种批判性思维:对技术炒作保持警惕,主张实事求是,根据具体场景选择合适的技术栈。

四、现实例子

  1. 关于“微服务”:有人可能认为把所有单体应用拆成微服务,就能解决扩展性、团队协作和部署的所有问题。但实际上,微服务带来了服务治理、网络延迟、数据一致性、调试困难等新挑战。所以资深架构师会说:“微服务架构不是银弹。”

  2. 关于“新编程语言”:每出现一种新语言(如Go, Rust),都有人宣称它能解决内存安全、并发等所有痛点。但它可能学习曲线陡峭、生态不完善,无法替代所有场景下的其他语言。

  3. 关于“人工智能/AIOps”:有人认为引入AI就能自动解决所有运维难题。但实际上,它严重依赖数据质量,且无法理解业务逻辑的深层原因,只能作为辅助工具。

五、与你之前问题的关联

在我上一段回答的结尾,我写道:“没有银弹。在实现时,需要根据具体的业务场景……选择一种或多种组合方案。”

我想表达的意思是

在幂等性处理这个领域,没有一种方法(Token、唯一索引、状态机、锁…)能完美、简单地解决所有场景下的所有问题。你必须理解每种方案的原理、优缺点和适用场景,然后针对你手头的具体问题(是支付?还是创建订单?并发量多大?)进行权衡和选择,甚至可能需要组合使用。

这就是典型的“没有银弹”思维 —— 承认问题的复杂性,摒弃寻找万能药的幻想,转向务实、具体的情境化分析和设计。

所以,“银弹”这个词,是技术人用来保持清醒、抵制技术浮夸风的“防忽悠暗号”之一。

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BullSmall

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值