吞吐率(Requests per second),缩写RPS

计算公式:

吞吐率 = 总请求数 / 处理这些请求的总完成时间
Requests per second = Complete requests / Time taken for tests

吞吐率是服务器并发处理能力的量化描述,单位是reqs/s,指的是某个并发用户数下单位时间内处理的请求数。
某个并发用户数下单位时间内能处理的最大的请求数,称之为最大吞吐率

QPS、每秒查询率(Query Per Second)

计算公式:

qps = 请求查询数 / 秒
qps = fetchs / per second

每秒查询率QPS是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。
在因特网上,作为域名系统服务器的机器的性能经常用每秒查询率来衡量。
qps相当于最大吞吐率

并发连接数(The number of concurrent connections)

并发连接数就是服务器某个时刻所接受的请求数目,也就是某个时刻所接受的会话数目。

并发用户数(The number of concurrent users, Concurrent Level)

一个用户可能产生多个会话,所以并发用户数和并发连接数并不重复。并发用户数是指服务器某个时刻所能接受的用户数。

TPS(Transactions Per Second),每秒传输的事务数

TPS也就是单位时间内,服务器能处理的最大事务数。
一个事务是指一个客户机向服务器发送请求然后服务器做出反应的过程。
一般的,评价系统性能均以每秒钟完成的技术交易的数量来衡量。
系统整体处理能力取决于处理能力最低模块的TPS值。

用户平均请求等待时间(Time per requests)

计算公式:

用户平局请求等待时间 = 总时间 / (总请求数 / 并发用户数)
Time per requests = Time taken for tests / (Complete requests / Concurrent Level)

服务器平均请求等待时间(Time per requests: across all concurrent requests)

计算公式:

服务器平均等待时间 = 总时间 / 总请求数
Average request latency server = Time taken for tests / Complete requests

服务器平均请求等待时间是吞吐率的倒数。同时:学什么

服务器平均等待时间 = 用户平均请求等待时间 / 并发用户数
Average request latency server = Time per requests / Concurrent Level
### 配置 Web 服务器或 API 的每秒最大请求数 在配置 Web 服务器或 API 的每秒最大请求数 (RPS, Requests Per Second) 时,通常涉及以下几个方面: #### Kestrel 和 HTTP/2 协议下的速率限制 对于基于 .NET Core 或 ASP.NET Core 构建的应用程序,Kestrel 是默认的 Web 服务器。然而,在处理 HTTP/2 请求时需要注意特定的行为。由于 HTTP/2 支持请求多路复用功能,因此不支持针对单个请求动态调整速率限制[^1]。尽管如此,仍然可以通过 `KestrelServerOptions.Limits` 设置全局范围内的速率限制,这些限制适用于所有的连接类型(HTTP/1.x 和 HTTP/2)。以下是通过 C# 配置 Kestrel 全局速率限制的一个示例: ```csharp public void Configure(IApplicationBuilder app, IWebHostEnvironment env) { var options = new KestrelServerOptions(); options.Limits.MaxConcurrentConnections = 100; // 最大并发连接数 options.Limits.MinRequestBodyDataRate.BytesPerSecond = 1024 * 1024; // 最低请求数据率(字节/秒) options.Limits.MinResponseDataRate.BytesPerSecond = 1024 * 1024; // 最低响应数据率(字节/秒) app.UseRouting(); app.UseEndpoints(endpoints => { endpoints.MapControllers(); }); } ``` 上述代码片段展示了如何设置最低的数据传输速率以及最大并发连接数。 #### 使用中间件实现更细粒度的控制 如果需要更加灵活地管理 RPS,则可以引入第三方库或者自定义中间件来完成此目标。例如,Microsoft 提供了一个名为 **AspNetCore.RateLimit** 的开源项目,它允许开发者轻松实施 IP 基础上的限流策略或其他维度上的流量管控措施。下面是一个简单的例子展示如何安装并启用该组件: 首先,添加 NuGet 包到您的项目文件中: ```bash dotnet add package AspNetCore.RateLimit ``` 接着修改 Startup.cs 文件中的服务注册部分如下所示: ```csharp services.AddInMemoryRateLimiting(); // 添加内存版限流器 services.Configure<IpRateLimitOptions>(config.GetSection("IpRateLimiting")); // 加载配置项 ``` 最后记得创建对应的 JSON 配置节点用于指定具体的规则集。 #### 数据累积等待时间的影响 当讨论性能调优话题时,另一个值得注意的因素是服务器返回给客户端的数据量大小设定。某些情况下可能希望延迟回复直到满足一定数量的数据才发送出去,这有助于减少网络交互次数从而提升整体效率[^2]。不过这种做法也可能带来额外延时影响用户体验,所以在实际应用过程中需权衡利弊做出合理决策。 #### 性能优化参考资料 有关于 SharePoint 2010 这样的企业级 CMS 平台如何进行性能改进的具体指南也可以作为学习材料之一[^4]。虽然其版本较旧但仍包含了大量通用原则可供借鉴参考。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值