普林斯顿数学指南-1[Timothy Gowers] 1
译者序 5
序 8
撰稿人 19
目录 27
第1部分 引论 31
第2部分 现代数学的起源 145
第3部分 数学概念 266
普林斯顿数学指南-2[Timothy Gowers] 534
目录 562
封面 534
普林斯顿数学指南 536
内容简介 537
译者序 538
序 542
撰稿人 554
第IV部分数学的各个分支 564
IV.1 代数数 564
IV.2 解析数论 591
IV.3 计算数论 621
IV.4 代数几何 645
IV.5 算术几何 661
IV.6 代数拓扑 677
IV.7 微分拓扑 697
IV.8 模空间 716
IV.9 表示理论 733
IV.10 几何和组合群论 752
IV.11 调和分析 779
IV.12 偏微分方程S 791
IV.13 广义相对论和爱因斯坦方程 835
IV.14 动力学 854
IV.15 算子代数 881
IV.16 镜面对称 902
IV.17 顶点算子代数 926
IV.18 枚举组合学与代数组合学 945
IV.19 极值组合学与概率组合学 968
IV.20 计算复杂性 990
IV.21 数值分析 1034
IV.22 集合理论 1054
IV.23 逻辑和模型理论 1084
IV.24 随机过程 1103
IV.25 临界现象的概率模型 1119
IV.26 高维几何学及其概率类比 1140
封底 1159
封底 1159
普林斯顿数学指南-3[Timothy Gowers] 1160
目录 1188
封面 1160
普林斯顿数学指南 1162
内容简介 1163
译者序 1164
序 1168
撰稿人 1180
第V部分定理与问题 1193
V.1 ABC 猜想 1193
V.2 阿蒂亚{辛格指标定理 1194
V.3 巴拿赫{塔尔斯基悖论 1198
V.4 Birch-Swinnerton-Dyer 猜想 1200
V.5 卡尔松定理 1201
V.6 中心极限定理 1203
V.7 有限单群的分类 1204
V.8 狄利克雷素数定理 1206
V.9 遍历定理 1206
V.10 费马大定理 1211
V.11 不动点定理 1213
V.12 四色定理 1219
V.13 代数的基本定理 1223
V.14 算术的基本定理 1224
V.15 哥德尔定理 1225
V.16 Gromov 多项式增长性定理 1229
V.17 希尔伯特零点定理 1230
V.18 连续统假设的独立性 1230
V.19 不等式 1231
V.20 停机问题的不可解性 1236
V.21 五次方程的不可解性 1240
V.23 Mostow 强刚性定理 1244
V.24 P 对NP 问题 1248
V.25 庞加莱猜想 1248
V.26 素数定理与黎曼假设 1249
V.27 加法数论的问题与结果 1250
V.28 从二次互反性到类域理论 1255
V.29 曲线上的有理点与莫德尔猜想 1260
V.30 奇异性的消解 1263
V.31 黎曼{罗赫定理 1264
V.32 Robertson-Seymour 定理 1266
V.33 三体问题 1268
V.34 单值化定理 1272
V.35 韦伊猜想 1273
第VI 部分数学家传记* 1279
VI.1 毕达哥拉斯 1279
VI.2 欧几里得 1280
VI.3 阿基米德 1282
VI.4 阿波罗尼乌斯 1283
VI.5 阿尔? 花拉子米 1285
VI.6 斐波那契 1286
VI.7 卡尔达诺 1286
VI.8 庞贝里 1287
VI.9 维特 1287
VI.10 斯特凡 1289
VI.11 笛卡儿 1289
VI.12 费马 1292
VI.13 帕斯卡 1294
VI.14 牛顿 1295
VI.15 莱布尼兹 1297
VI.16 泰勒 1300
VI.17 哥德巴赫 1301
VI.18 伯努利家族 1301
VI.19 欧拉 1304
VI.20 达朗贝尔 1308
VI.21 华林 1310
VI.22 拉格朗日 1311
VI.23 拉普拉斯 1314
VI.24 勒让德 1316
VI.25 傅里叶 1318
VI.26 高斯 1320
VI.27 泊松 1321
VI.28 波尔扎诺 1323
VI.29 柯西 1324
VI.30 莫比乌斯 1325
VI.31 罗巴切夫斯基 1326
VI.32 格林 1328
VI.33 阿贝尔 1329
VI.34 鲍耶伊 1331
VI.35 雅可比 1332
VI.36 狄利克雷 1334
VI.37 哈密顿 1336
VI.38 德? 摩根 1337
VI.39 刘维尔 1337
VI.40 库默尔 1339
VI.41 伽罗瓦 1340
VI.42 西尔维斯特 1342
VI.43 布尔 1344
VI.44 魏尔斯特拉斯 1346
VI.45 切比雪夫 1347
VI.46 凯莱 1348
VI.47 厄尔米特 1350
VI.48 克罗内克 1351
VI.49 黎曼 1353
VI.50 戴德金 1355
VI.51 马蒂厄 1357
VI.52 约当 1357
VI.53 李 1358
VI.54 康托 1360
VI.55 克利福德 1363
VI.56 弗雷格 1364
VI.57 克莱因 1366
VI.58 弗罗贝尼乌斯 1368
VI.59 柯瓦列夫斯卡娅 1369
VI.60 伯恩塞德 1371
VI.61 庞加莱 1372
VI.62 佩亚诺 1374
VI.63 希尔伯特 1375
VI.64 闵可夫斯基 1378
VI.65 阿达玛 1379
VI.66 弗雷德霍姆 1381
VI.67 德? 拉? 瓦莱? 布散 1381
VI.68 豪斯道夫 1383
VI.69 嘉当 1384
VI.70 博雷尔 1386
VI.71 罗素 1386
VI.72 勒贝格 1388
VI.73 哈代 1389
VI.74 里斯 1392
VI.75 布劳威尔 1393
VI.76 艾米? 诺特 1395
VI.77 谢尔品斯基 1397
VI.78 伯克霍夫 1398
VI.79 李特尔伍德 1400
VI.80 外尔 1403
VI.81 斯科伦 1405
VI.82 拉马努金 1406
VI.83 柯朗 1408
VI.84 巴拿赫 1410
VI.85 维纳 1413
VI.86 阿廷 1415
VI.87 塔尔斯基 1417
VI.88 科尔莫戈罗夫 1418
VI.89 丘奇 1421
VI.90 霍奇 1422
VI.91 冯? 诺依曼 1423
VI.92 哥德尔 1426
VI.93 韦伊 1427
VI.94 图灵 1429
VI.95 鲁宾逊 1431
VI.96 布尔巴基 1433
第VII 部分数学的影响 1437
VII.1 数学与化学 1437
VII.2 数理生物学 1452
VII.3 小波及其应用 1468
VII.4 网络中的流通的数学 1490
VII.5 算法设计的数学 1503
VII.6 信息的可靠传输 1514
VII.7 数学与密码 1527
VII.8 数学和经济学的思考 1541
VII.9 货币的数学 1562
VII.10 数理统计学 1573
VII.11 数学与医学统计 1581
VII.12 数学的分析与哲学的分析 1591
VII.13 数学与音乐 1603
VII.14 数学与艺术 1617
第VIII 部分卷末的话:一些看法 1638
VIII.1 解题的艺术 1638
VIII.2 您会问\数学是为了什么" 1656
VIII.3 数学的无处不在 1674
VIII.4 数的意识 1684
VIII.5 数学: 一门实验科学 1697
VIII.6 对青年数学家的建议 1711
VIII.7 数学大事年表 1726
封底 1739