All correlations significant at .001 level. Is it okay?

本文探讨了相关系数的显著性不仅取决于其大小,还受到样本量的影响。通过解释t统计量随样本量增加而增大的原理,文章指出即使较小的相关系数在大样本量下也可能变得显著,并建议研究者关注效应大小而非仅仅依赖于统计显著性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

the significance does not only depend on the magnitude of the correlation coefficient, but also on your sample size!! The same coefficient of r=.40 could be either non-significant with a small sample size (maybe N=10 --> p=.25) or highly significant for a larger sample size (e.g. N=100 --> p=0.000037). The coefficient is the same, but the significance changes with sample size.

That is because the t-statistics for the significance test includes the sample size, t=r*sqrt((N-2)/(1-r^2)). As you can see, with growing sample size, t increases (p-value of the specific t-distribution in turn depends on df=N-2).

So, in your case, with quite a large sample size it is not surprising that approx all r> .105 are significant.

But this does not mean that some of your correlations are not nonsense correlations driven by other variables which you already partialed out, but this is with regard to content and not statistics per se. The same logic of p-values also holds for partial correlations, so if the inclusion of a third variable does not decrease the partial correlation below a specific level, it will still remain significant.

In my opinion you should think of r as an effect size and do not care so much about the significance. Is a very small, but significant correlation, e.g. r=.15 really of practical interest for you and your research (question)?? Does it explain variance of interest?


https://www.researchgate.net/post/All_correlations_significant_at_001_level_Is_it_okay

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值