模拟:求数位之积为已知数的最小正整数


今天同学发的一道题,智商仿佛交了次关税,想到死胡同里去了。

分析这道题,首先对于Q等于0的情况,题目中要求N必须是正整数,所以肯定不能是0。这里是个坑,它并非是不存在N的,而应该是10,1*0=0。

其次是Q为1~9的情况,这里N等于Q就是了,没什么可解释的。

剩下的情况从10~最大值,从9-2开始对Q取因数,(不取1是因为1只会多占位不影响乘法结果,乘以1和没乘是一样的),如果在2~9中取到因数的话,Q值除以这个因数继续从9~2取因数直至Q值为1时结束计算,然后倒着输出这些因数就是最终的结果。需要注意的是必须从9~2这个顺序来计算,这样计算得到的才是低位尽可能取出大因数,而高位得到最小因数,且取到最小位数。如Q=40,依次取到的因数是8,5.得到的最小数N就是58。在运算过程中如果出现当前Q值不能被2~9的任意一个数整除,那么立即停止计算,表明N不存在输出-1。

当时自己一直想着2~9的顺序来取因数,再压缩排序什么的……白鼓捣半天。

以下是具体代码

#include<stdio.h>
#include<stdlib.h>
int gcd(int num);
void que(int num,int pointer);
int array[500],sp,min;
int main(int argc,char* argv[])
{
	int ind,num;
	scanf("%d",&ind);
	while(ind--)
	{
		scanf("%d",&num);
		if(num<10)
		{
			if(!num)
				printf("10\n");
			else
				printf("%d\n",num);
			continue;
		}
		sp=0,min=99999;
		que(num,1);
		if(!sp)
		{
			int i;
			for(i=min;i>=1;i--)
				printf("%d",array[i]);
			putchar('\n');
		}
	}
	return EXIT_SUCCESS;
}
void que(int num,int pointer)
{
	if(pointer>min||sp==1)
		return;
	if(num==1)
	{
		min=pointer-1;
		return;
	}
	if(gcd(num))
	{
		printf("-1\n");
		sp=1;
		return;
	}
    int i;
	for(i=9;i>=2;i--)
	{
		if(!(num%i))
		{
			array[pointer]=i;
			que(num/i,pointer+1);
			return;
		}
	}
}
int gcd(int num)
{
	int i;
	for(i=2;i<=9;i++)
	{
		if(!(num%i))
			break;
	}
	if(i>9&&num!=1&&num!=0)
		return 1;
	else
		return 0;
	
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/belous_zxy/article/details/79946145
文章标签: 模拟
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭