八数码 bfs unordered_map

在一个 3×33×3 的网格中,1∼81∼8 这 88 个数字和一个 x 恰好不重不漏地分布在这 3×33×3 的网格中。

例如:

1 2 3
x 4 6
7 5 8

在游戏过程中,可以把 x 与其上、下、左、右四个方向之一的数字交换(如果存在)。

我们的目的是通过交换,使得网格变为如下排列(称为正确排列):

1 2 3
4 5 6
7 8 x

例如,示例中图形就可以通过让 x 先后与右、下、右三个方向的数字交换成功得到正确排列。

交换过程如下:

1 2 3   1 2 3   1 2 3   1 2 3
x 4 6   4 x 6   4 5 6   4 5 6
7 5 8   7 5 8   7 x 8   7 8 x

现在,给你一个初始网格,请你求出得到正确排列至少需要进行多少次交换。

输入格式

输入占一行,将 3×33×3 的初始网格描绘出来。

例如,如果初始网格如下所示:

1 2 3 
x 4 6 
7 5 8 

则输入为:1 2 3 x 4 6 7 5 8

输出格式

输出占一行,包含一个整数,表示最少交换次数。

如果不存在解决方案,则输出 −1−1。

输入样例:

2  3  4  1  5  x  7  6  8

输出样例

19
#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>
#include <unordered_map>

using namespace std;
string state;

int bfs(string state) {
    queue<string> q;
    unordered_map<string, int> d;

    q.push(state);
    d[state] = 0;

    int dx[] = {-1, 1, 0, 0}, dy[] = {0, 0, -1, 1};
    string end = "12345678x";

    while (q.size()) {
        auto t = q.front();
        q.pop();

        if (t == end) return d[t];

        int distance = d[t];
        int k = t.find('x');
        int x = k / 3, y = k % 3;

        for (int i = 0; i < 4; i++) {
            int a = x + dx[i], b = y + dy[i];
            if (a >= 0 && b >= 0 && a < 3 && b < 3) {
                swap(t[a * 3 + b], t[k]);
                if (!d.count(t)) {
                    d[t] = distance + 1;
                    q.push(t);
                }
                swap(t[a * 3 + b], t[k]);
            }
        }
    }
    
    return -1;
}

int main() {
    char op[2];
    for (int i = 0; i < 9; i++) {
        scanf("%s", op);
        state += *op;
    }

    cout << bfs(state) << endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值