- 博客(9)
- 收藏
- 关注
原创 典型图像分类卷积神经网络(CNN)的基本流程
本文介绍了卷积神经网络(CNN)的基本概念与结构。首先阐述了卷积核的作用,包括特征提取、参数共享和平移不变性。其次详细说明了卷积的输入输出维度计算,涉及填充(padding)和步长(stride)的应用。接着讨论了让特征图变小的两种方法:步长和池化(pooling)。然后描述了CNN图像分类的基本流程,从卷积到全连接层形成分类头。最后简要介绍了AlexNet、VGG13和ResNet等经典CNN模型。文章重点在于解析CNN的核心计算过程,包括特征图尺寸变化和参数量的计算方法。
2026-01-15 18:18:58
332
原创 回归实战代码详解
本文摘要: 本文介绍了使用PyTorch框架构建COVID-19预测模型的关键步骤。首先导入必要的库,包括数据处理、神经网络和优化模块。然后定义自定义数据集类,实现数据预处理、标准化和划分功能。接着构建一个简单神经网络模型,包含两个全连接层和ReLU激活函数。最后详细说明了训练流程,包括损失计算、反向传播、参数更新,以及模型评估和保存最佳模型的机制。整个过程涵盖了PyTorch模型开发的核心环节,包括数据准备、模型构建、训练验证等关键步骤。
2026-01-13 17:23:31
456
原创 手动linear线性回归训练
本文介绍了使用PyTorch实现线性回归模型的完整流程。首先通过create_data函数生成500个带噪声的合成数据样本,基于真实参数true_w和true_b。然后构建了数据加载器data_provider,实现随机分批功能。模型采用简单的线性函数fun,损失函数为MAE,优化使用SGD算法。在训练过程中,通过50个epoch迭代更新参数w_0和b_0,最终学习到的参数接近真实值。最后通过matplotlib可视化展示了第4个特征与标签的关系,绘制了拟合直线和原始数据散点图。代码中特别强调了梯度清零、参
2026-01-11 18:45:39
445
原创 408数据结构—图
使用一维数组存放顶点的信息使用二维数组存放边的信息,即各个顶点之间的邻接关系邻接矩阵:存储顶点之间的邻接关系的二维数组A[i][j]在有边时为1,无边时为0对于带权图而言,有边时存放权值,否则存放0或者♾无向图的邻接矩阵是对称矩阵,规模很大的话可以压缩存储以下是图的邻接矩阵存储结构的定义100//一维数组,顶点表//二维数组,邻接矩阵,边表//图的当前顶点数,边数}MGraph;当邻接矩阵里的元素只表示存在与否,我们可以使用0,1的枚举类型O(n²)
2025-02-10 10:45:51
995
原创 408数据结构—数组和特殊矩阵
数组与线性表的关系: 数组是线性表的推广。一维数组可视为一个线性表;二维数组可视为其元素是定长数组的线性表,以此类推。**数组一旦被定义,其维数和维界就不再改变。**因此,除结构的初始化和销毁外,数组只会有存取元素和修改元素的操作。
2025-01-01 22:42:59
641
原创 408数据结构—顺序表和链表
线性表是一种,表示元素之间一对一的相邻关系,同时还有非线性表顺序表和链表是,两者属于不同层面的概念我们可以用顺序表和链表实现线性表。
2024-12-29 22:48:26
1642
原创 408数据结构—时间复杂度的计算
算法效率的度量是通过时间复杂度和空间复杂度来描述的。时间复杂度在统考中是一大重点,在算法设计题里通常都会要求分析时间复杂度,空间复杂度,同时还会出现考察时间复杂度的选择题,所以需要考生熟练掌握重复执行算法中所有语句的频度之和记为T(n),是问题规模n的函数这里补充一下算法设计与分析课程中有关大O表示法等渐进符号的定义O: f(n)=O(g(n))当且仅当存在正的常数C和n0,使得对于所有的n≥ n0,有f(n)≤Cg(n)。此时,称g(n)是f(n)当 n充分大时的一个上界。
2024-12-28 21:52:57
1006
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅