此题为根据中序遍历和后序遍历构造树。是一道经典题目,采用递归的方法。
首先根据后序遍历的性质可以得知,后序遍历的最后一个值一定是根节点。因此我们找到根节点在中序遍历的位置,根据中序遍历的性质可以得知,根节点所在位置的左边全都是根节点的左子树,右边则全部都是根节点的右子树。因此我们可以根据这样一个基本的想法进行递归实现。在实现的过程中遇到了一个小问题,就是当递归求解的时候,我们需要将整个list划分成左右子树对应的list,对于中序list则非常好划分,就是root节点左右两边,对于后序list,一开始我以为中序list中靠近root的那个值就是前序的起始或结尾,后来发现具体起始和结尾完全对应了不同的树,不是一定的。后来才想到root左边数值的个数就是左子树的个数,也就是后序我们需要截取的数值的数量。
代码如下:
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def buildTree(self, inorder, postorder):
"""
:type inorder: List[int]
:type postorder: List[int]
:rtype: TreeNode
"""
if len(inorder) == 0:
return None
root = TreeNode(postorder[-1])
root_index = inorder.index(postorder[-1])
if len(inorder) == 1:
return root
if root_index == 0:
root.left = None
root.right = self.buildTree(inorder[root_index+1:], postorder[:-1])
elif root_index == len(postorder)-1:
root.right = None
root.left = self.buildTree(inorder[:root_index],postorder[:-1])
else:
root.left = self.buildTree(inorder[:root_index], postorder[:root_index])
root.right = self.buildTree(inorder[root_index+1:], postorder[root_index:-1])
return root