时间复杂度

写这篇文章的目的是记录自己在估算时间复杂度这方面所遇到的知识漏洞,在这里做一下笔记,都是很小的分散知识点啦

定义:时间复杂度是一种用来估算程序运行时间的一种函数表达形式

几个符号

  • 如果 T(n) 的增长率 小于等于 f(n) 则用公式表示为 T(n)=O(f(n)))
  • 如果 T(n) 的增长率 大于等于 f(n) 则用公式表示为 T(n)=\Omega (f(n))
  • 如果 T(n) 的增长率 等于 f(n) 则用公式表示为 T(n)=\Theta (f(n))
  • 如果 T(n) 的增长率 小于 f(n) 则用公式表示为 T(n)=o(f(n))

运算规则

  • T_{1}(N)=O(f(N))并且T_{2}(N)=O(g(N))
  • T_{1}(N)+T_{2}(N)=O(f(N)+g(N)),也可以写成max(O(f(N))+O(g(N)))
  • T_{1}(N)*T_{2}(N)=O(f(N)*g(N))
  • T(N)为一个 k 次多项式,则T(N)=\theta (N^{k})
  • 对于任意常数 k 则log^{k}N=O(n),说明对数增长的十分缓慢

我们可以通过计算极限\lim_{N\rightarrow \infty }f(N)/g(N)确定两个函数的相对增长率

  • 极限为0,代表分子是比分母高阶的无穷小,也就是说分子增长率小于分母,f(N)=o(g(N))
  • 极限为常数c,代表分子分母等价无穷小, f(N)=\Theta (g(N))
  • 极限为\infty,代表分子增长率高于分母,g(N)=o(f(N))

主方法:递归时间复杂度的计算

T(n)=aT(\frac{n}{b})+f(n)

T(n)=\begin{cases}O(n^{log_{b}a}) & \text{ if } f(n)=O(n^{log_{b}a}) \\ O(n^{log_{b}a}log^{k+1}n) & \text{ if } f(n)=\Theta(n^{log_{b}a}log^{k}n) \\ f(n) & \text{ if } f(n)=\Omega(n^{log_{b}a}) \end{cases}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值