二叉树小结

链式存储结构

typedef struct BitNode
{
    Elemtype data;
    struct BitNode *lchild,*rchild;
}BitNode,*BiTree;

二叉树遍历

void preOrder(BiTree T) //先序遍历
{
    if(T!=NULL)
    {
        visit(T);					//1
        preOrder(T->lchild);		//2
        preOrder(T->rchild);		//3
    }
}
中序遍历:213  后序遍历:231

三种遍历算法每个结点仅访问一次,时间复杂度为 O ( n ) O(n) O(n),递归工作栈的深度恰好为树的深度,最坏情况下二叉树有n个结点并且深度为n(相当于一条链下来),此时的空间复杂度为 O ( n ) O(n) O(n)

中序遍历非递归形式

void InOrder(BiTree T)
{
    stack<BiTree>s;
    BiTree p=T;
    while(p||!s.empty())
    {
        if(p)
        {
            s.push(p);
            p=p->lchild;
        }
        else
        {
            p=s.top();
            s.pop();
            cout<<p->data<<endl;
            p=p->rchild;
        }

    }
}

层次遍历

void levelOrder(BiTree T)
{
    queue<BiTree>q;
    BiTree p;
    q.push(T);
    while(!q.empty())
    {
        p=q.front();
        q.pop();
        cout<<p->data<<endl;
        if(p->lchild!=NULL)
            q.push(p->lchild);
        if(p->rchild!=NULL)
            q.push(p->rchild);
    }
}
可以唯一确定一棵二叉树的遍历有:
  • 先序+中序
  • 后序+中序
  • 层次+中序
    如果只知道先序和后序,则无法唯一确定一棵二叉树
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值