题目描述
完全背包:
有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。
第 i 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
题目解释以及二维朴素写法
每件物品都有相应价值和体积,每件物品能取无限次,找到取出来的物体的总体积不超过V的最大价值是多少。
思路:与01背包相似只需每次加入新的物体时判断(1,2,3,4,........)个当前物体是否能装入当前体积中,能装入是否获得价值最大即可。
所以只需在01背包基础上添加一个循环即可
代码如下
#include<iostream>
using namespace std;
int n,m;
int v[1005],w[1005],f[1005][1005];
int main()
{
int i,j,k;
cin>>m>>n;
for(i=1;i<=n;i++) cin>>v[i]>>w[i];
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
for(k=0;k<=j/v[i];k++)
{
f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
}
}
}
cout<<f[n][m];
return 0;
}
二维进阶写法
我们从朴素版本可以将循环拆开来看
一式: f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i],f[i-1][j-2*v[i]]+2*w[i],f[i-1][j-3*v[i]]+3*w[i],........)
二式:f[i][j-v[i]]=max( f[i-1][j-v[i]]+w[i],f[i-1][j-2*v[i]]+2*w[i],f[i-1][j-3*v[i]+3*w[i]],........)
三式:f[i][j-2*v[i]]=max( f[i-1][jj-2*v[i]]+2*w[i],f[i-1][j-3*v[i]]+3*w[i]........)
也就是说f[i][j-v[i]]可以等效于一式中f[i-1][j]后的全部内容
因为我们背包容量是从小到大找的
又因为j-v[i]<j
所以我们会在找到f[i][j]之前找到f[i][j-v[i]]
会在找到f[i][j-v[i]]之前找到f[i][j-2*v[i]]
会在找到f[i][j-2*v[i]]之前找到[f[i][j-3*v[i]]
...........
他们之间互相仅相对相差一个f[i-1][j]的比大小
进一步说可以将二式带入一式得到f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i])
从而消掉一层循环
代码如下
#include<bits/stdc++.h>
using namespace std;
int n,V;
int f[1005][1005],v[1005],w[1005];
int main()
{
cin>>n>>V;
for(int i=1;i<=n;i++)
cin>>v[i]>>w[i];
for(int i=1;i<=n;i++)
for(int j=1;j<=V;j++)
{
f[i][j]=f[i-1][j];
if(j>=v[i])
f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);
}
cout<<f[n][V];
return 0;
}
一维写法
这里的每次的相应体积的最大值并不需要将每次的都存储下来每次操作仅需上次的数据即可,所以可以将[i]去掉
而这里寻找的f[i][j-v[i]]就是需要寻找当前物品时才刷新过的数据所以循环并不需要像01背包中从大到小循环
代码如下
#include<bits/stdc++.h>
using namespace std;
const int N=1e4+5;
int n,m;
int f[N],v[N],w[N];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>v[i]>>w[i];
for(int i=1;i<=n;i++)
for(int j=v[i];j<=m;j++)
{
if(j>=v[i])
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
cout<<f[m];
return 0;
}
感谢浏览。