[Luogu4321]随机漫游

题意

给你一幅图,每次给你一个点 u u 和一个点集S

问从 u u 出发走完S集合(即 S S 内点都至少经过一次)的期望步数

一个点u会等概率地走向其相邻的点


题解

这玩意是 PKUWC2018D2T3 P K U W C 2018 D 2 T 3 随机游走的加强版

思路和[HNOI2013]游走类似,也是通过高斯消元来 DP D P

考虑设 f[S][i] f [ S ] [ i ] 表示走完 S S 集合,当前在点i,然后要把剩下的所有点都走完的期望步数

可以发现,如果询问的是 u,S u , S 那么对应的 f f 值就是f[allS][u]

就是相当于把 S S 的补集都走完了,然后现在再从u S S 走完的期望

这样如果预处理出f,每个询问就可以 O(1) O ( 1 ) 回答了

这里有个小 trick t r i c k 就是如果 uS u ∈ S 这样就错了,因为 uallS u ∉ a l l − S

所以对应要求的答案应该是 f[(allS)|u][u] f [ ( a l l − S ) | u ] [ u ]

考虑怎么求出 f[S][u] f [ S ] [ u ] ,初值 f[all]=0 f [ a l l ] = 0

flag: f l a g : 所以这玩意怕不是要倒推

和游走一样列式, du d u 表示 u u 的点度

f[S][u]=1duuvEf[S|v][v]+1

考虑暴力的话就是用高斯消元解这 n2n n 2 n 个方程 , , 复杂度O((n2n)3)

这样显然是不行的

考虑到要么 SS|v, S ⊂ S | v , 要么 S=S|v, S = S | v , vS v ∈ S

我们把方程分开一下

f[S][u]=1du[uvE,vSf[S][v]+uvE,vSf[S|v][v]]+1 f [ S ] [ u ] = 1 d u [ ∑ u → v ∈ E , v ∈ S f [ S ] [ v ] + ∑ u → v ∈ E , v ∉ S f [ S | v ] [ v ] ] + 1

f[S][u]1duuvE,vSf[S][v]=1duuvE,vSf[S|v][v]+1 f [ S ] [ u ] − 1 d u ∑ u → v ∈ E , v ∈ S f [ S ] [ v ] = 1 d u ∑ u → v ∈ E , v ∉ S f [ S | v ] [ v ] + 1

也就是说,如果我们知道 f[S|v] f [ S | v ] DP D P 值那么我们每个状态就只要列 n n 个方程

所以按照集合大小倒推,然后每个状态列n个方程即可

复杂度 O(n32n+ni) O ( n 3 2 n + ∑ n i )

#include<bits/stdc++.h>
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
#define go(u) for(register int i=fi[u],v=e[i].to;i;v=e[i=e[i].nx].to)
#define file(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char ss[1<<17],*A=ss,*B=ss;
inline char gc(){return A==B&&(B=(A=ss)+fread(ss,1,1<<17,stdin),A==B)?-1:*A++;}
template<class T>inline void sd(T&x){
    char c;T y=1;while(c=gc(),(c<48||57<c)&&c!=-1)if(c==45)y=-1;x=c-48;
    while(c=gc(),47<c&&c<58)x=x*10+c-48;x*=y;
}
char sr[1<<21],z[20];int C=-1,Z;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
template<class T>inline void we(T x){
    if(C>1<<20)Ot();if(x<0)sr[++C]=45,x=-x;
    while(z[++Z]=x%10+48,x/=10);
    while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=19,S=1<<N,P=998244353;
typedef int arr[N];
typedef long long ll;
int n,m,all,f[S][N];arr e,dg,id,pos,inv,ans,Mi,G[N];
inline int fpm(int a,int b){int x=1;for(;b;b>>=1,a=(ll)a*a%P)if(b&1)x=(ll)x*a%P;return x;}
inline int pls(int a,int b){return a+=b,a<P?a:a-P;}
inline int sub(int a,int b){return a-=b,a<0?a+P:a;}
inline void Gauss(int n){
    int mx,t,x;
    fp(i,1,n)fp(j,1,n)G[i][j]=pls(G[i][j],P);
    fp(i,1,n){mx=i;
        fp(j,i,n)if(G[mx][i]<G[j][i])mx=j;
        if(mx^i)fp(j,i,n+1)swap(G[mx][j],G[i][j]);
        x=fpm(G[i][i],P-2);
        fp(j,i+1,n){
            t=(ll)x*G[j][i]%P;
            fp(k,i,n+1)G[j][k]=sub(G[j][k],(ll)t*G[i][k]%P);
        }
    }
    fd(i,n,1){
        fp(j,i+1,n)G[i][n+1]=sub(G[i][n+1],(ll)ans[j]*G[i][j]%P);
        ans[i]=(ll)G[i][n+1]*fpm(G[i][i],P-2)%P;
    }
}
int main(){
    #ifndef ONLINE_JUDGE
        file("s");
    #endif
    sd(n),sd(m);all=(1<<n)-1;int u,v;
    Mi[1]=1;fp(i,2,n)Mi[i]=Mi[i-1]<<1;
    inv[1]=1;fp(i,2,n)inv[i]=(ll)(P-P/i)*inv[P%i]%P;
    while(m--)sd(u),sd(v),e[u]|=Mi[v],e[v]|=Mi[u],++dg[u],++dg[v];
    fd(s,all-1,1){
        int Cnt=0,x,p;
        fp(i,1,n)if(s&Mi[i])id[pos[i]=++Cnt]=i;
        fp(i,1,Cnt){fp(j,1,Cnt)G[i][j]=0;ans[i]=0;}
        fp(i,1,n)if(s&Mi[i]){
            x=inv[dg[i]],p=pos[i];G[p][p]=1,G[p][Cnt+1]=1;
            fp(j,1,n)if(e[i]&Mi[j]){
                if(s&Mi[j])G[p][pos[j]]-=x;
                else G[p][Cnt+1]=pls(G[p][Cnt+1],(ll)x*f[s|Mi[j]][j]%P);
            }
        }
        Gauss(Cnt);
        fp(i,1,Cnt)f[s][id[i]]=ans[i];
    }
    sd(m);
    while(m--){
        static int s;sd(s);u=0;
        while(s--)sd(v),u|=Mi[v];sd(v);
        we(f[(all^u)|Mi[v]][v]);
    }
return Ot(),0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值