[HNOI2018]毒瘤

题意

求一幅图的最大独立集方案数

n105, n ≤ 10 5 , 满足非树边 11 ≤ 11


AFO A F O 之后这篇题解搁了好久 =.= = . =


题解

1. 1. 考虑一棵树怎么做

和普通求独立集一样枚举这个点选不选然后用乘法原理计算即可

f[u][1]=f[u][1]*f[v][0];
f[u][0]=f[u][0]*(f[v][0]+f[v][1]);

2. 2. 考虑怎么处理非树边

因为只有 11 11 条非树边 , , 所以可以枚举这些边的两个端点的选择情况

可以发现只有3种情况 (1,0),(0,0),(0,1) ( 1 , 0 ) , ( 0 , 0 ) , ( 0 , 1 )

但是实际上可以发现只需要枚举上面那个点选不选 , , (0,0) (0,1) ( 0 , 1 ) 可以合并起来

然后对于每一种状态再朴素做一遍树 DP D P

复杂度 O(2mn+1n) O ( 2 m − n + 1 n )

#include<bits/stdc++.h>
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
#define go(u) for(register int i=fi[u],v=e[i].to;i;v=e[i=e[i].nx].to)
#define file(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char ss[1<<17],*A=ss,*B=ss;
inline char gc(){return A==B&&(B=(A=ss)+fread(ss,1,1<<17,stdin),A==B)?-1:*A++;}
template<class T>inline void sd(T&x){
    char c;T y=1;while(c=gc(),(c<48||57<c)&&c!=-1)if(c==45)y=-1;x=c-48;
    while(c=gc(),47<c&&c<58)x=x*10+c-48;x*=y;
}
char sr[1<<21],z[20];int C=-1,Z;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
template<class T>inline void we(T x){
    if(C>1<<20)Ot();if(x<0)sr[++C]=45,x=-x;
    while(z[++Z]=x%10+48,x/=10);
    while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1e5+5,P=998244353;
typedef int arr[N];
typedef long long ll;
struct eg{int nx,to;}e[N<<1];
int n,m,ans,dft,Cnt,f[N][2],fg[N][2];arr fi,fa,eu,ev,Mi,dfn,vis;
inline int pls(int a,int b){return a+=b,a<P?a:a-P;}
void dfs(int u){
    dfn[u]=++dft;
    go(u)if(v^fa[u]){
        if(!dfn[v])fa[v]=u,dfs(v);
        else if(dfn[u]<dfn[v])eu[++Cnt]=u,ev[Cnt]=v;
    }
}
void dp(int u){
    f[u][0]=!fg[u][1],f[u][1]=!fg[u][0],vis[u]=1;
    go(u)if(!vis[v]){
        dp(v);
        f[u][1]=(ll)f[u][1]*f[v][0]%P;
        f[u][0]=(ll)f[u][0]*(f[v][0]+f[v][1])%P;
    }
}
inline void add(int u,int v){static int ce=0;e[++ce]={fi[u],v},fi[u]=ce;}
int main(){
    #ifndef ONLINE_JUDGE
        file("s");
    #endif
    sd(n),sd(m);int u,v;
    fp(i,1,m)sd(u),sd(v),add(u,v),add(v,u);
    dfs(1);Mi[1]=1;fp(i,2,Cnt)Mi[i]=Mi[i-1]<<1;
    fp(s,0,(1<<Cnt)-1){
        fp(i,1,Cnt)
            if(s&Mi[i])fg[eu[i]][1]=fg[ev[i]][0]=1;
            else fg[eu[i]][0]=1;
        fp(i,1,n)vis[i]=0;dp(1);ans=pls(ans,pls(f[1][1],f[1][0]));
        fp(i,1,Cnt)
            if(s&Mi[i])fg[eu[i]][1]=fg[ev[i]][0]=0;
            else fg[eu[i]][0]=0;
    }
    printf("%d\n",ans);
return 0;
}

这样就可以拿到 75 75 分了

3. 3. 考虑怎么优化

可以发现上面的暴力算法中有很多状态都是重复计算了的

我们把连有非树边的点当做关键点

因为每次影响 DP D P 值的就只有这些关键点

所以我们考虑建出这 22 22 个关键点的虚树

对于虚树上一条边 uv,dp u → v , d p 方程可以化为

f[u][0/1]=kv,0/1,0f[v][0]+kv,0/1,1f[v][1] f [ u ] [ 0 / 1 ] = ∏ k v , 0 / 1 , 0 f [ v ] [ 0 ] + k v , 0 / 1 , 1 f [ v ] [ 1 ]

可以发现每条边的系数是不会改变的

所以关键就在于怎么求出每一条边的系数

对于一条虚树边 uv, u → v , 将原树中 uv u → v 的路径提出来

v v 节点向上跳并暴力转移系数,若遇到分叉则额外转移上分叉处的系数

如果遇到一个新的关键点就重置系数

根据虚树的性质 , , 一个分叉点要么是关键点要么子树里就一个关键点

可以发现这样转移的总复杂度是O(n)

对于虚树上的边我们还是按照上面的想法枚举端点的情况

s=mn+1, s = m − n + 1 , 那么复杂度就是 O(n+s2s) O ( n + s 2 s )

#include<bits/stdc++.h>
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
#define go(u) for(register int i=fi[u],v=e[i].to;i;v=e[i=e[i].nx].to)
#define file(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char ss[1<<17],*A=ss,*B=ss;
inline char gc(){return A==B&&(B=(A=ss)+fread(ss,1,1<<17,stdin),A==B)?-1:*A++;}
template<class T>inline void sd(T&x){
    char c;T y=1;while(c=gc(),(c<48||57<c)&&c!=-1)if(c==45)y=-1;x=c-48;
    while(c=gc(),47<c&&c<58)x=x*10+c-48;x*=y;
}
char sr[1<<21],z[20];int C=-1,Z;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
template<class T>inline void we(T x){
    if(C>1<<20)Ot();if(x<0)sr[++C]=45,x=-x;
    while(z[++Z]=x%10+48,x/=10);
    while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1e5+15,P=998244353;
typedef int arr[N];
typedef long long ll;
struct eg{int nx,to;}e[N<<1];
int n,m,ans,dft,Cnt,f[N][2],p[N][2],fg[N][2];arr fi,fa,sz,eu,ev,Mi,dfn,vis,mark;
void dfs(int u){
    dfn[u]=++dft;
    go(u)if(v^fa[u]){
        if(!dfn[v])fa[v]=u,dfs(v),sz[u]+=sz[v];
        else{mark[u]=1;
            if(dfn[u]<dfn[v])eu[++Cnt]=u,ev[Cnt]=v;
        }
    }mark[u]|=sz[u]>=2;sz[u]=sz[u]||mark[u];
}
inline int pls(int a,int b){return a+=b,a<P?a:a-P;}
struct Coe{
    int x,y;
    inline Coe operator+(const Coe b){return{pls(x,b.x),pls(y,b.y)};}
    inline Coe operator*(const int b){return{int((ll)x*b%P),int((ll)y*b%P)};}
}k[N][2];
struct Vg{int nx,to;Coe a,b;}E[N];int Fi[N];
inline void ADD(int u,int v,Coe a,Coe b){static int ce=0;E[++ce]={Fi[u],v,a,b},Fi[u]=ce;}
int Vt(int u){
    p[u][0]=p[u][1]=1;vis[u]=1;int pos=0,w;
    go(u)if(!vis[v]){
        w=Vt(v);
        if(!w){
            p[u][1]=(ll)p[u][1]*p[v][0]%P;
            p[u][0]=(ll)p[u][0]*(p[v][0]+p[v][1])%P;
        }else if(mark[u])ADD(u,w,k[v][0]+k[v][1],k[v][0]);
        else k[u][1]=k[v][0],k[u][0]=k[v][0]+k[v][1],pos=w;
    }
    if(mark[u])k[u][0]={1,0},k[u][1]={0,1},pos=u;
    else k[u][0]=k[u][0]*p[u][0],k[u][1]=k[u][1]*p[u][1];
    return pos;
}
void dp(int u){
    f[u][0]=fg[u][1]?0:p[u][0],
    f[u][1]=fg[u][0]?0:p[u][1];
    for(int i=Fi[u],v=E[i].to;i;v=E[i=E[i].nx].to){
        dp(v);int p=f[v][0],q=f[v][1];
        f[u][0]=(ll)f[u][0]*((ll)E[i].a.x*p%P+(ll)E[i].a.y*q%P)%P;
        f[u][1]=(ll)f[u][1]*((ll)E[i].b.x*p%P+(ll)E[i].b.y*q%P)%P;
    }
}
inline void add(int u,int v){static int ce=0;e[++ce]={fi[u],v},fi[u]=ce;}
int main(){
    #ifndef ONLINE_JUDGE
        file("s");
    #endif
    sd(n),sd(m);int u,v;
    fp(i,1,m)sd(u),sd(v),add(u,v),add(v,u);
    dfs(1);mark[1]=1;
    Vt(1);Mi[1]=1;fp(i,2,Cnt)Mi[i]=Mi[i-1]<<1;
    fp(s,0,(1<<Cnt)-1){
        fp(i,1,Cnt)
            if(s&Mi[i])fg[eu[i]][1]=fg[ev[i]][0]=1;
            else fg[eu[i]][0]=1;
        dp(1);ans=pls(ans,pls(f[1][1],f[1][0]));
        fp(i,1,Cnt)
            if(s&Mi[i])fg[eu[i]][1]=fg[ev[i]][0]=0;
            else fg[eu[i]][0]=0;
    }
    printf("%d\n",ans);
return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值