机器学习
文章平均质量分 77
Coder加油!
老程序员一枚,20年开发和技术管理经验。善长DevOps、Python、Java、C++和项目管理。欢迎关注交流。
展开
-
监督学习:从数据中学习预测模型的艺术与科学
监督学习(Supervised Learning)是指在有标签的训练数据集上进行学习,通过学习输入与输出之间的映射关系,构建一个预测模型,以便对未知数据进行预测。在监督学习中,训练数据集中的每个样本都包含一个输入和一个与之对应的输出(标签)。原创 2024-06-22 22:32:40 · 1466 阅读 · 5 评论 -
【机器学习】深度学习赋能:基于 LSTM 的智能日志异常检测
使用 LSTM 网络进行日志序列异常检测是一种有效的方法。通过合理的数据预处理、模型构建和评估,可以实现高效、准确的异常检测。在实际应用中,结合具体的业务需求和日志特点,持续优化模型和数据处理方法,可以进一步提高性能和可靠性。希望本文提供的详细介绍和最佳实践能为你在日志序列异常检测中的实践提供有价值的参考原创 2024-06-21 07:00:00 · 12509 阅读 · 163 评论 -
Stable Diffusion 推荐硬件配置和本地化布署
Stable Diffusion是由Stability AI开发的一种强大的文本到图像(Text-to-Image)生成模型,它能够根据用户提供的文本描述,生成与之相关的高质量、高分辨率图像。本文推荐本地化布署的硬件配置和介绍本地化安装配置过程。原创 2024-03-31 14:00:00 · 1547 阅读 · 0 评论 -
深度学习该如何入门?
作为一个从事计算机行业的从业者来说,我们需要怎么样才能入门深度学习?下面是深度学习入门知识点和一个6-12月的学习计划,希望对你有用,收藏一下吧。原创 2024-03-31 09:24:06 · 697 阅读 · 0 评论 -
AI绘画自动生成器有哪些?
目前市面上有不少AI绘画自动生成器,下面列举一些比较知名的:DALL-E ,Midjourney,Stable Diffusion,Artbreeder等等原创 2024-03-30 22:57:29 · 882 阅读 · 0 评论 -
量化交易中怎么使用机器学习和大模型
机器学习和大模型为量化交易注入了更多数据驱动的智能,可以极大提升交易策略的稳健性和效率。预测建模:利用机器学习算法如深度学习、强化学习等,基于历史数据建立预测模型,预测未来资产价格走势、波动率等,为交易决策提供支持。高频交易:在高频领域,机器学习可用于订单执行优化、做市策略等,提升交易执行效率。情绪分析:用NLP模型分析新闻、社交媒体等文本数据,捕捉市场情绪变化,为量化交易提供另一维度的信号。异常检测:利用无监督学习等方法实时检测交易数据中的异常点,防范金融欺诈、算法失控等风险。原创 2024-03-20 10:47:59 · 1245 阅读 · 0 评论 -
机器学习和大模型的关系,怎么入门
总的来说,大模型是机器学习发展到一定阶段的产物,它们展示了机器学习的巨大潜力,同时也为机器学习的发展注入了新的动力。以往的机器学习主要关注特定任务的训练(如分类、回归等),而大模型引入了预训练-微调的范式。大模型,尤其是自然语言处理领域的大模型(如GPT-3、BERT等),是利用机器学习,特别是深度学习技术训练出来的。大模型的出现,展示了机器学习,特别是深度学习在处理复杂任务上的巨大潜力。大模型,尤其是预训练语言模型,具有强大的语言理解和生成能力,可以应用于问答、对话、摘要、翻译等多种自然语言处理任务。原创 2024-03-19 17:44:34 · 1962 阅读 · 0 评论