01.01 机器学习系列
文章平均质量分 95
个人关于“机器学习算法的理论知识介绍及 Python 代码实现”文章合集。
空杯的境界
这个作者很懒,什么都没留下…
展开
-
“机器学习系列”文章合集
本人在学习 机器学习 的相关理论知识过程中,进行了整理和归纳。一是对自己的学习过程的总结,二是希望对大家有一定的参考作用。相关内容可能会存在缺少相关内容介绍、缺陷和错误等等问题,欢迎大家拍砖和相互学习交流。原创 2019-04-13 13:45:38 · 623 阅读 · 0 评论 -
机器学习系列 15:集成学习
本内容将介绍 集成学习,主要介绍集成学习中的 提升(Boosting)方法、Bagging 与 随机森林 算法,以及集成学习中的结合策略。原创 2019-05-15 22:53:08 · 480 阅读 · 0 评论 -
机器学习系列 13:贝叶斯分类 01 - 贝叶斯决策论、朴素贝叶斯分类器 和 半朴素贝叶斯分类器
本内容将介绍 贝叶斯决策论、朴素贝叶斯分类器 和 半朴素贝叶斯分类器。原创 2019-04-13 13:16:36 · 2553 阅读 · 3 评论 -
机器学习系列 11:支持向量机 03 - 非线性支持向量机
本内容将介绍 非线性支持向量机。原创 2019-02-24 18:31:14 · 804 阅读 · 0 评论 -
机器学习系列 10:支持向量机 02 - SMO(序列最小化)
本内容将介绍 SMO(序列最小化)算法,包含详细公式推导以及 Python 代码实现。原创 2019-02-24 22:32:28 · 497 阅读 · 0 评论 -
机器学习系列 09:支持向量机 01 - 线性可分支持向量机和线性支持向量机
本内容将介绍 线性可分支持向量机 和 线性支持向量机。原创 2019-01-15 22:59:58 · 895 阅读 · 0 评论 -
机器学习系列 08:深入理解拉格朗日乘子法、KKT 条件和拉格朗日对偶性
本内容将介绍支持向量机(SVM) 中需要使用的基础知识:拉格朗日乘子法、KKT 条件 和 拉格朗日对偶性。原创 2018-12-26 22:55:51 · 847 阅读 · 0 评论 -
机器学习系列 07:决策树 02 - CART 算法
本内容将介绍决策树中的 CART 算法以及 Python 代码实现。其可用于分类和回归,具体实现包含分类树、回归树和模型树。原创 2018-11-24 21:28:05 · 650 阅读 · 0 评论 -
机器学习系列 06:决策树 01
本内容将介绍用于分类的决策树(decision tree),以及 ID3、C4.5 和 CART 算法。原创 2018-11-24 21:16:11 · 529 阅读 · 0 评论 -
机器学习系列 05:Logistic 回归及 Python 实现
本内容将介绍机器学习中的 Logistic 回归 及 Python 代码实现,和 Softmax 回归。原创 2018-12-03 23:14:22 · 569 阅读 · 0 评论 -
机器学习系列 04:梯度下降法及 Python 实现
本内容将介绍 梯度下降法 以及其三种类型( 批量梯度下降法(BGD)、随机梯度下降法(SGD) 和 小批量梯度下降法(MBGD))。最后将给出使用随机梯度下降法拟合一个线性回归模型的代码。原创 2018-11-13 23:18:50 · 852 阅读 · 0 评论 -
机器学习系列 03:线性回归模型
本内容将介绍机器学习中的线性回归模型,及 Python 代码实现。原创 2018-11-12 23:19:46 · 699 阅读 · 1 评论 -
机器学习系列 02:感知机
本内容将介绍机器学习中的 感知机模型,并说明感知机学习算法的原始形式和对偶形式。原创 2018-10-25 22:41:56 · 495 阅读 · 0 评论 -
机器学习系列 01:k 近邻法(k-NN)的原理及实现
本内容将介绍机器学习中的 k 近邻法(k-NN) 的原理及暴力和 kd 树实现。原创 2018-10-16 22:14:14 · 1115 阅读 · 1 评论