算法-插入排序算法(三)

定义

插入排序(Insertion sort)是一种简单直观且稳定的排序算法。如果有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,但要求插入后此数据序列仍然有序,这个时候就要用到一种新的排序方法——插入排序法,插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
插入排序的基本思想是:每步将一个待排序的记录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。

其实打过扑克牌的朋友应该能秒懂插入算法,囧。

时间复杂度

如果目标是把n个元素的序列升序排列,那么采用插入排序存在最好情况和最坏情况。最好情况就是,序列已经是升序排列了,在这种情况下,需要进行的比较操作需(n-1)次即可。最坏情况就是,序列是降序排列,那么此时需要进行的比较共有n(n-1)/2次。插入排序的赋值操作是比较操作的次数加上 (n-1)次。平均来说插入排序算法的时间复杂度为O(n^2)。因而,插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,例如,量级小于千,那么插入排序还是一个不错的选择。

插入排序对部分有序的数组很有效,而前面的冒泡与选择排序则不然。事实上,当倒置的数量很少时,插入排序很可能比大多数排序都要快。

代码实现

public static  int[] sort(int arrays[]){

        //临时变量
        int temp;

        //外层循环控制需要排序的趟数(从1开始因为将第0位看成了有序数据)
        for (int i = 1; i < arrays.length; i++) {

            temp = arrays[i];

            //如果前一位(已排序的数据)比当前数据要大,那么就进入循环比较
            while (i >= 1 && arrays[i - 1] > temp) {

                //往后退一个位置,让当前数据与之前前位进行比较
                arrays[i] = arrays[i - 1];

                //不断往前,直到退出循环
                i--;

            }

            //退出了循环说明找到了合适的位置了,将当前数据插入合适的位置中
            arrays[i] = temp;

        }
        return arrays;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值