POJ2409 BurnSide 定理的简单应用+轨道 稳定化子定理介绍(不证明)

本文介绍了如何使用BurnSide定理解决POJ2409问题,即计算染色项链的不同方案数。文章通过实例解释了旋转和翻转的处理,探讨了置换群的概念,以及群论中的轨道稳定化子定理,并给出了相关代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

世界真的很大
今天的集训老师上午直接讲了这个什么定理,然后在他以为都听懂了的情况下继续讲题。。。无奈我只得花了一上午看这个**群论,并没有把 轨道定理证明出来。。但这个定理如果不对群论有了解的话看不懂的,所以还是浅谈一下。。
首先这道poj2409,题目大意是,给你c种颜色,和一条n长度的项链,有多少种染色方案,嗯,就是这样,,(但是如果两种方案旋转或翻转之后是相同的,我们认为这其实是1种方案);
首先很明确是burnside定理,那么根矩定理可以直接求解,没什么难度。。我们首先需要置换群(不懂的小伙伴我会在后面讲)的元素个数|G|,这里很明显就是项链长度n,但不完全是。
先来谈谈旋转吧,一个for循环枚举置换,步数设为k,那么循环节数为gcd(k,n),针对每个循环节的每个位置,有c种颜色可以填,那么本质暂且不同的方案就有c^gcd(k,n)个,依次枚举便是,代码:

for(int i=1;i<=n;i++)
           ans+
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值