1. 题目
给定一个数组 nums 和滑动窗口的大小 k,请找出所有滑动窗口里的最大值。
2. 解题思路
2.1 暴力法
当确定了滑动窗口的范围之后,每次都去遍历这个滑动窗口获得最大值。时间复杂度为O(K)。
2.2 优化
其实只要发现一点就能降低时间复杂度:如果前一个滑动窗口的最大值仍然在当前滑动窗口中,那么只需要比较前一个滑动窗口的最大值和新的滑动窗口的新的值就行了,将某些滑动窗口最大值的时间复杂度降低为O(1),但是如果前一个滑动窗口的最大值不在当前滑动窗口中,仍需遍历比较大小。
2.3 单调队列
详情见 面试题59 - I. 滑动窗口的最大值(单调队列,清晰图解)
3. 代码实现
3.1 暴力法
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
"""
滑动窗口
"""
res = []
if len(nums) == 0:
return []
if len(nums) < k:
max_ = nums[0]
for i in range(k):
if nums[i] > max_:
max_ = nums[i]
res.append(max_)
else:
for i in range(len(nums)-k+1):
max_ = nums[i] # 当前滑动窗口的最大值
for j in range(i, i+k):
if nums[j] > max_:
max_ = nums[j]
res.append(max_)
return res
3.2 优化
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
"""
滑动窗口
1. 暴力法
2. 记录滑动窗口的最大值所在的下标,防止重复比较
"""
if len(nums) == 0: # 输入为空数组
return []
if len(nums) < k: # k的值大于数组长度
max_ = nums[0]
for i in range(len(nums)):
if nums[i] > max_:
max_ = nums[i]
return [max_]
res = []
max_index = None
for i in range(len(nums)-k+1):
if not max_index or max_index < i:
max_index = i
for j in range(i, i+k):
if nums[j] > nums[max_index]:
max_index = j
else: # 若上一个滑动窗口的最大值仍然在现在的滑动窗口中,则只需比较新的值和最大值的大小即可
max_index = i+k-1 if nums[max_index] < nums[i+k-1] else max_index
res.append(nums[max_index])
return res
3.3 单调队列
详情见 面试题59 - I. 滑动窗口的最大值(单调队列,清晰图解)
4. 总结
其实很多题都是这样,只能要找到关键点就能避免重复的操作。
5. 参考文献
[1] 剑指offer丛书
[2] 剑指Offer——名企面试官精讲典型编程题