题面在这里
做法:
树剖+线段树动态开点。
容易想到对每个宗教建一棵线段树,不过空间限制不够,所以需要动态开点。别的都和正常树剖一样。
代码如下:
/*************************************************************
Problem: bzoj 3531 [Sdoi2014]旅行
User: fengyuan
Language: C++
Result: Accepted
Time: 10784 ms
Memory: 71536 kb
Submit_Time: 2017-12-06 12:52:53
*************************************************************/
#include<bits/stdc++.h>
#define rep(i, x, y) for (int i = (x); i <= (y); i ++)
#define down(i, x, y) for (int i = (x); i >= (y); i --)
#define mid ((l+r)/2)
#define lc (o<<1)
#define rc (o<<1|1)
#define pb push_back
#define mp make_pair
#define PII pair<int, int>
#define F first
#define S second
#define B begin()
#define E end()
using namespace std;
typedef long long LL;
//head
const int N = 100010, M = 4000010;
int n, m, cnt, clk, tot;
char ch[5];
int head[N], w[N], c[N], rt[N], in[N], depth[N], fa[N], sz[N], son[N], top[N], pre[N], mx[M], sum[M], L[M], R[M];
struct Edge{
int to, nex;
}e[N<<1];
inline void add(int x, int y)
{
e[++ cnt].to = y;
e[cnt].nex = head[x];
head[x] = cnt;
}
inline void dfs(int u, int last, int s)
{
depth[u] = s; fa[u] = last; sz[u] = 1;
for (int i = head[u]; i; i = e[i].nex){
int v = e[i].to; if (v == last) continue;
dfs(v, u, s+1); sz[u] += sz[v];
if (!son[u] || sz[v] > sz[son[u]]) son[u] = v;
}
}
inline void dfs2(int u, int t)
{
top[u] = t; in[u] = ++ clk; pre[clk] = u;
if (son[u]) dfs2(son[u], t);
for (int i = head[u]; i; i = e[i].nex){
int v = e[i].to; if (v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
inline void pushup(int o)
{
sum[o] = sum[L[o]] + sum[R[o]];
mx[o] = max(mx[L[o]], mx[R[o]]);
}
inline void update(int &o, int l, int r, int x, int v)
{
if (!o) o = ++ tot;
if (l == r){
sum[o] = mx[o] = v;
return;
}
if (x <= mid) update(L[o], l, mid, x, v);
else update(R[o], mid+1, r, x, v);
pushup(o);
}
inline int query(int o, int l, int r, int x, int y, int flag)
{
if (l == x && r == y) return flag ? mx[o] : sum[o];
if (y <= mid) return query(L[o], l, mid, x, y, flag);
else if (x > mid) return query(R[o], mid+1, r, x, y, flag);
else {
int s1 = query(L[o], l, mid, x, mid, flag);
int s2 = query(R[o], mid+1, r, mid+1, y, flag);
if (flag) return max(s1, s2);
else return s1 + s2;
}
}
inline int solve(int t, int x, int y, int flag)
{
int ret = 0;
while (top[x] != top[y]){
if (depth[top[x]] < depth[top[y]]) swap(x, y);
if (flag) ret = max(ret, query(rt[t], 1, n, in[top[x]], in[x], flag));
else ret += query(rt[t], 1, n, in[top[x]], in[x], flag);
x = fa[top[x]];
}
if (depth[x] > depth[y]) swap(x, y);
if (flag) ret = max(ret, query(rt[t], 1, n, in[x], in[y], flag));
else ret += query(rt[t], 1, n, in[x], in[y], flag);
return ret;
}
int main()
{
scanf("%d%d", &n, &m);
rep(i, 1, n) scanf("%d%d", &w[i], &c[i]);
rep(i, 1, n-1){
int x, y; scanf("%d%d", &x, &y);
add(x, y); add(y, x);
}
dfs(1, 0, 0); dfs2(1, 1);
rep(i, 1, n) update(rt[c[i]], 1, n, in[i], w[i]);
while (m --){
int x, y;
scanf("%s%d%d", ch, &x, &y);
if (ch[0] == 'C'){
if (ch[1] == 'C'){
update(rt[c[x]], 1, n, in[x], 0);
c[x] = y;
update(rt[c[x]], 1, n, in[x], w[x]);
} else {
update(rt[c[x]], 1, n, in[x], y);
w[x] = y;
}
} else{
if (ch[1] == 'M') printf("%d\n", solve(c[x], x, y, 1));
else printf("%d\n", solve(c[x], x, y, 0));
}
}
return 0;
}