Drainage Ditches
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 9176 Accepted Submission(s): 4303
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.
5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10
50
刚学网络流,这题用了两种方法敲了下,这是网络流入门的好题
ford_fulkerson和dinic
自己感觉还是 dinic效率高些
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include<stack>
using namespace std;
const int inf=10000000;
const int N=210;
struct edge{int to,cap,res;};
vector<edge> g[N];
int iter[N];
int level[N];
void init()
{
for(int i=0;i<N;i++)
g[i].clear();
}
void bfs(int s)
{
memset(level,-1,sizeof(level));
level[s]=0;
queue<int> q;
q.push(s);
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=0;i<g[u].size();i++)
{
edge &e=g[u][i];
if(e.cap>0&&level[e.to]<0)
{
level[e.to]=level[u]+1;
q.push(e.to);
}
}
}
}
int dfs(int s,int t,int f)
{
if(s==t) return f;
for(int &i=iter[s];i<g[s].size();i++) // 这里用i=0开始也可以,不过这样可以优化一下
{
edge &e=g[s][i];
if(e.cap>0&&level[e.to]>level[s])
{
int d=dfs(e.to,t,min(f,e.cap));
if(d>0)
{
e.cap-=d;
g[e.to][e.res].cap+=d;
return d;
}
}
}
return 0;
}
void add_edge(int from,int to,int cost)
{
edge tmp;
tmp.to=to;tmp.cap=cost;tmp.res=g[to].size();
g[from].push_back(tmp);
tmp.to=from;tmp.cap=0;tmp.res=g[from].size()-1;
g[to].push_back(tmp);
}
int max_flow(int s,int t)
{
int ans=0;
for(;;)
{
bfs(s);
if(level[t]<0) return ans;
memset(iter,0,sizeof(iter));
while(1)
{
int f=dfs(s,t,inf);
if(f>0) ans+=f;
else break;
}
}
}
int main()
{
int e,v;
while(scanf("%d%d",&e,&v)!=EOF)
{
init();
for(int i=0;i<e;i++)
{
int aa,bb,cc;
scanf("%d%d%d",&aa,&bb,&cc);
add_edge(aa,bb,cc);
}
printf("%d\n",max_flow(1,v));
}
return 0;
}
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include<stack>
using namespace std;
const int N=210;
int used[N];
struct edge{int to,cap,res;};
const int inf=10000000;
vector<edge> g[N];
int dfs(int s,int t,int f)
{
used[s]=1;
if(s==t) return f;
for(int i=0;i<g[s].size();i++)
{
edge &e=g[s][i];
if(e.cap>0&&!used[e.to])
{
int d=dfs(e.to,t,min(f,e.cap));
if(d>0)
{
e.cap-=d;
g[e.to][e.res].cap+=d;
return d;
}
}
}
return 0;
}
void init()
{
for(int i=0;i<N;i++)
g[i].clear();
}
void add_edge(int from,int to,int cost)
{
edge tmp;
tmp.to=to;tmp.cap=cost;tmp.res=g[to].size(); //这里要好好理解一下
g[from].push_back(tmp);
tmp.to=from;tmp.cap=0;tmp.res=g[from].size()-1;
g[to].push_back(tmp);
}
int max_flow(int s,int t)
{
int ans=0;
for(;;)
{
memset(used,0,sizeof(used));
int f=dfs(s,t,inf);
if(f<=0)
return ans;
ans+=f;
}
}
int main()
{
int v,e;
while(scanf("%d%d",&e,&v)!=EOF)
{
init();
for(int i=0;i<e;i++)
{
int aa,bb,cc;
scanf("%d%d%d",&aa,&bb,&cc);
add_edge(aa,bb,cc);
}
printf("%d\n",max_flow(1,v));
}
return 0;
}