[CISCN 2021 华南赛区]rsa
题目描述
from flag import text,flag
import md5
from Crypto.Util.number import long_to_bytes,bytes_to_long,getPrime
assert md5.new(text).hexdigest() == flag[6:-1]
msg1 = text[:xx]
msg2 = text[xx:yy]
msg3 = text[yy:]
msg1 = bytes_to_long(msg1)
msg2 = bytes_to_long(msg2)
msg3 = bytes_to_long(msg3)
p1 = getPrime(512)
q1 = getPrime(512)
N1 = p1*q1
e1 = 3
print pow(msg1,e1,N1)
print (e1,N1)
p2 = getPrime(512)
q2 = getPrime(512)
N2 = p2*q2
e2 = 17
e3 = 65537
print pow(msg2,e2,N2)
print pow(msg2,e3,N2)
print (e2,N2)
print (e3,N2)
p3 = getPrime(512)
q3 = getPrime(512)
N3 = p3*q3
print pow(msg3,e3,N3)
print (e3,N3)
print p3>>200
通过审计代码可知,flag == md5(text),text = msg1 + msg2 + msg3
所以只要能解出msg1,2,3就能解出flag
part1
p1 = getPrime(512)
q1 = getPrime(512)
N1 = p1*q1
e1 = 3
print pow(msg1,e1,N1)
print (e1,N1)
小明文攻击,e过小导致明文的三次方依然比n小,直接对c1开三次方
part2
p2 = getPrime(512)
q2 = getPrime(512)
N2 = p2*q2
e2 = 17
e3 = 65537
print pow(msg2,e2,N2)
print pow(msg2,e3,N2)
print (e2,N2)
print (e3,N2)
典型的共模攻击,推导过程如下:
首先,两个加密指数互质:
gcd(e1,e2)=1
即存在s1、s2使得:
s1 * e1+s2 * e2=1
又因为:
c1≡m^e1 mod n
c2≡m mod n
代入化简可得:
c1^s1 * c2^s2 ≡ m mod n
即可求出明文
part3
p3 = getPrime(512)
q3 = getPrime(512)
N3 = p3*q3
print pow(msg3,e3,N3)
print (e3,N3)
print p3>>200
题目将p3右移200位,而p3原本有512位,所以我们用Coppersmith partial information attack算法求p3的低位即可解出p3,q3
其中,Coppersmith partial information attack基于sage实现。
完整exp
from Crypto.Util.number import *
import gmpy2
from hashlib import md5
import sys
sys.setrecursionlimit(1000000)
def egcd(a, b):
if a == 0:
return b, 0, 1
else:
g, y, x = egcd(b % a, a)
return g, x - (b // a) * y, y
def modinv(a, m):
g, x, y = egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:
return x % m
def CommonMode(e1, e2, c1, c2, n):
s = egcd(e1, e2)
s1 = s[1]
s2 = s[2]
if s1 < 0:
s1 = - s1
c1 = modinv(c1, n)
elif s2 < 0:
s2 = - s2
c2 = modinv(c2, n)
m = (pow(c1, s1, n) * pow(c2, s2, n)) % n
return long_to_bytes(m)
c1 = 19105765285510667553313898813498220212421177527647187802549913914263968945493144633390670605116251064550364704789358830072133349108808799075021540479815182657667763617178044110939458834654922540704196330451979349353031578518479199454480458137984734402248011464467312753683234543319955893
e1 = 3
n1 = 123814470394550598363280518848914546938137731026777975885846733672494493975703069760053867471836249473290828799962586855892685902902050630018312939010564945676699712246249820341712155938398068732866646422826619477180434858148938235662092482058999079105450136181685141895955574548671667320167741641072330259009
msg1 = long_to_bytes(gmpy2.iroot(c1, e1)[0])
c2 = 54995751387258798791895413216172284653407054079765769704170763023830130981480272943338445245689293729308200574217959018462512790523622252479258419498858307898118907076773470253533344877959508766285730509067829684427375759345623701605997067135659404296663877453758701010726561824951602615501078818914410959610
c3 = 91290935267458356541959327381220067466104890455391103989639822855753797805354139741959957951983943146108552762756444475545250343766798220348240377590112854890482375744876016191773471853704014735936608436210153669829454288199838827646402742554134017280213707222338496271289894681312606239512924842845268366950
e2 = 17
e3 = 65537
n2 = 111381961169589927896512557754289420474877632607334685306667977794938824018345795836303161492076539375959731633270626091498843936401996648820451019811592594528673182109109991384472979198906744569181673282663323892346854520052840694924830064546269187849702880332522636682366270177489467478933966884097824069977
msg2 = CommonMode(e2, e3, c2, c3, n2)
c4 = 59213696442373765895948702611659756779813897653022080905635545636905434038306468935283962686059037461940227618715695875589055593696352594630107082714757036815875497138523738695066811985036315624927897081153190329636864005133757096991035607918106529151451834369442313673849563635248465014289409374291381429646
n3 = 113432930155033263769270712825121761080813952100666693606866355917116416984149165507231925180593860836255402950358327422447359200689537217528547623691586008952619063846801829802637448874451228957635707553980210685985215887107300416969549087293746310593988908287181025770739538992559714587375763131132963783147
p3_high = 7117286695925472918001071846973900342640107770214858928188419765628151478620236042882657992902
#这部分代码用sage去跑
# n=113432930155033263769270712825121761080813952100666693606866355917116416984149165507231925180593860836255402950358327422447359200689537217528547623691586008952619063846801829802637448874451228957635707553980210685985215887107300416969549087293746310593988908287181025770739538992559714587375763131132963783147
# p4=7117286695925472918001071846973900342640107770214858928188419765628151478620236042882657992902#已知P的高位
# e=65537
# pbits=512 #P原本的位数
#
# kbits=pbits - p4.nbits()
# print (p4.nbits())
# p4 = p4 << kbits
# PR.<x> = PolynomialRing(Zmod(n))
# f = x + p4
# roots = f.small_roots(X=2^kbits,beta=0.4)
# # 经过以上一些函数处理后,n和p已经被转化为10进制
# if roots:
# p= p4 + int(roots([0]))
# print ("n",n)
# print ("p",p)
# print ("q",n/p)
p3 = 11437038763581010263116493983733546014403343859218003707512796706928880848035239990740428334091106443982769386517753703890002478698418549777553268906496423
q3 = 9918033198963879798362329507637256706010562962487329742400933192721549307087332482107381554368538995776396557446746866861247191248938339640876368268930589
d = gmpy2.invert(e3, (p3 - 1) * (q3 - 1))
msg3 = long_to_bytes(pow(c4, d, n3))
text = msg1 + msg2 + msg3
print(md5(text).hexdigest())
最终就得到了flag。