以下是关于支持异构算力的平台及其技术架构的详细分析:
一、硬件支撑平台
-
融合架构资源池化
通过虚拟化技术将CPU、GPU、NPU、FPGA、ASIC等异构硬件资源统一池化管理,支持动态分配。典型架构包括“CPU+GPU”、“CPU+FPGA”、“CPU+ASIC”等组合,分别应对交互响应和高并行计算场景。- 优势:提升硬件利用率,灵活适配AI训练、推理、科学计算等任务。
- 案例:华为CANN架构、新华三异构计算架构,均通过硬件资源池化实现算力优化。
-
异构AI算力适配平台
连接上层应用与底层硬件,提供全流程适配服务,包括:- 应用框架:抽象算法语义,屏蔽硬件差异(如适配TensorFlow、PyTorch等框架)。
- 开发套件:简化异构编程模型,实现计算负载的优化分配。
- 驱动与固件:确保硬件与操作系统兼容,支持安全校验和访问隔离。
二、软件框架与工具链
-
主流编程模型