行人属性识别
Better_me_1996
这个作者很懒,什么都没留下…
展开
-
Pose Guided Deep Model for Pedestrian Attribute Recognition in Surveillance Scenarios
Pose Guided Deep Model for Pedestrian Attribute Recognition in Surveillance Scenarios摘要 很多方法使用端到端的网络解决行人数属性识别问题,然而行人身体的结构信息没有得到很好的利用。因此,提出的PGDM方法包含了以下三点:1)从预训练的姿态估计模型中提取姿态知识的粗位姿估计;2)仅在图像层面监督下自适应定位信息图像区域的身体部位;3)结合基于部位特征的多特征融合进行属性识别。在推理阶段,文章将基于部分的特征和全局特征拼原创 2020-10-15 11:24:14 · 445 阅读 · 0 评论 -
通过弱监督多尺度的属性定位来增强行人属性识别
通过弱监督多尺度的属性定位来增强行人属性识别、摘要行人属性识别需要定位属性相关的属性来识别属性。现有的方法采用属性不确定的视觉注意或启发式身体部位定位机制来增强局部特征表示,而忽略了使用属性来定义局部特征区域。引言现有的大多数方法将行人属性识别当成多标签问题,然后仅仅从一张图片提取各个属性特征。该方法依赖于整体特征,但是区域特征对于高吸力度的属性分类更有用。有人采用注意力机制来获得相关属性的掩模,但是效果不好,生成的掩模通常包含比特定属性区域还要大的区域。有方法采用躯干检测、姿态估计、区域提议等原创 2020-10-09 09:32:27 · 322 阅读 · 0 评论 -
基于改进损失函数的多阶段行人属性识别方法
基于改进损失函数的多阶段行人属性识别方法一、 摘要文中基于深度学习理论提出多阶段行人属性识别方法,同时探索属性间的正、负相关性。二、网络结构三、算法流程第一阶段 第一阶段将网络最后一个全连接层的输出神经元个数修改为行人属性的数目,网络的其它层仍然保持原有结构,将最后一层全连接层的输出作为sigmoid 激活函数的输入,经此激活函数输出每个属性的预测值。 每个小批次中的每个属性产生的平均损失值: 每个属性的分类精度: 平均损失值: 平均精度: 平均损失值和平均精度作原创 2020-09-22 16:06:18 · 504 阅读 · 0 评论