P5318 【深基18.例3】查找文献 【图的两种遍历】
https://www.luogu.com.cn/problem/P5318
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=1e5+10;
const int M=1e6+10;
int h[N],e[M],ne[M],idx;
bool st[N];
int n,m;
struct node
{
int a,b;
}Node[M];
bool cmp(node a,node b)
{
if(a.a==b.a)
return a.b>b.b;
return a.a<b.a;
}
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void dfs(int u)
{
st[u]=true;
cout<<u<<" ";
for(int i=h[u];i!=-1;i=ne[i])
{
int j=e[i];
if(!st[j])
{
dfs(j);
}
}
}
void bfs(int u)
{
queue<int> q; q.push(u);
while(q.size())
{
int t=q.front(); q.pop();
if(st[t]) continue;
st[t]=true;
cout<<t<<" ";
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(!st[j])
{
q.push(j);
}
}
}
}
int main(void)
{
cin>>n>>m;
memset(h,-1,sizeof h);
for(int i=0;i<m;i++) cin>>Node[i].a>>Node[i].b;
sort(Node,Node+m,cmp);//排序
for(int i=0;i<m;i++) add(Node[i].a,Node[i].b);
dfs(1); cout<<endl;
memset(st,0,sizeof st);
bfs(1); cout<<endl;
return 0;
}
P1807 最长路
https://www.luogu.com.cn/problem/P1807
Bellman-Ford算法:
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int N=1510;
const int M=5*1e5+10;
struct edge
{
int a,b,w;
}edges[M];
int dist[N],backup[N];
int n,m;
int bellman_ford()
{
memset(dist,-0x7f,sizeof dist);
dist[1]=0;
for(int i=0;i<n;i++)
{
memcpy(backup,dist,sizeof dist);
for(int j=0;j<m;j++)
{
int a=edges[j].a,b=edges[j].b,w=edges[j].w;
dist[b]=max(dist[b],backup[a]+w);
}
}
if (dist[n] < -0x7f7f7f7f / 2) return -1;
return dist[n];
}
int main(void)
{
cin>>n>>m;
for(int i=0;i<m;i++)
{
int a,b,w;
scanf("%d%d%d",&a,&b,&w);
edges[i].a=a;
edges[i].b=b;
edges[i].w=max(w,edges[i].w);
}
cout<<bellman_ford()<<endl;
return 0;
}
floyd()算法:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1510;
const int INF=-0x7f7f7f7f;
int d[N][N];
int n,m;
int floyd()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(d[i][k]!=INF&&d[k][j]!=INF)
d[i][j]=max(d[i][j],d[i][k]+d[k][j]);
}
}
}
return d[1][n];
}
int main(void)
{
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i==j) d[i][j]=0;
else d[i][j]=INF;
for(int i=0;i<m;i++)
{
int a,b,c; cin>>a>>b>>c;
d[a][b]=max(d[a][b],c);
}
if(floyd()== INF ) cout<<-1<<endl;
else cout<<d[1][n]<<endl;
return 0;
}
P2853 [USACO06DEC]Cow Picnic S 【思路很好】
https://www.luogu.com.cn/problem/P2853
思路: 枚举每一个奶牛,记录到达牧场的次数。如果一个牧场的次数等于k说明每一个奶牛都可以来。
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int N=1e3+10;
const int M=1e4+10;
int h[N],e[M],ne[M],idx;
bool st[N];
int cnt[N];
int a[105];
int k,n,m;
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void dfs(int u)
{
st[u]=true;
cnt[u]++;
for(int i=h[u];i!=-1;i=ne[i])
{
int j=e[i];
if(!st[j])
{
dfs(j);
}
}
}
int main(void)
{
cin>>k>>n>>m;
memset(h,-1,sizeof h);
for(int i=0;i<k;i++) cin>>a[i];
while(m--)
{
int a,b; cin>>a>>b;
add(a,b);
}
for(int i=0;i<k;i++)
{
memset(st,0,sizeof st);
dfs(a[i]);
}
int ans=0;
for(int i=1;i<=n;i++)
{
if(cnt[i]==k) ans++;
}
cout<<ans<<endl;
return 0;
}