AutoMate: A Dataset and Learning Approach for Automatic Mating of CAD Assemblies
AutoMate: A Dataset and Learning Approach for Automatic Mating of
CAD Assemblies(自动化:CAD装配自动匹配的数据集和学习方法)2021 ACM
论文概述
这篇文章介绍了使用深度学习方法来预测计算机辅助设计(CAD)中的装配关系(mates)。主要内容和贡献如下:
- 提出了一种新的基于边界表示(BREPs)的图神经网络SB-GCN,可以学习不同拓扑实体(面、边、顶点等)的嵌入表示。这是第一个异构的BREP表示学习模型。
- 收集并整理了第一个大规模的基于BREP的装配建模数据集,包含180,102个装配关系。
- 应用SB-GCN来预测装配关系的位置和类型。位置预测准确率达到72.2%,类型预测准确率达到70%。
- 将该方法集成到一个商业CAD系统Onshape中,实现了自动完成装配关系的功能,显著提高了装配效率。
- 分析了预测结果的不确定性,并讨论了模型的局限性和未来可扩展的方向。
总体来说,本文通过图神经网络表示学习的方法,实现了针对CAD工作流程的第一个装配建模系统,取得了较好的效果,为CAD系统的智能化提供了有价值的参考。
摘要
装配建模是计算机辅助设计(CAD)的核心任务,约占CAD工作流程的三分之一。因此,优化这一过程在CAD系统的