Bridging the Gap between Geometry and User Intent Retrieval of CAD Models via Regions of Interest

研究提出一种交互式CAD模型检索系统,利用用户定义的兴趣区域表达设计意图,结合自监督学习和局部特征描述符,实现高效、实时的个性化检索。实验显示在机械部件数据集上性能提升,并探讨了多模态信息整合和特征关系约束的未来方向。
摘要由CSDN通过智能技术生成

Bridging the Gap between Geometry and User Intent: Retrieval of CAD Models via Regions of Interest

Bridging the Gap between Geometry and User Intent: Retrieval of CAD
Models via Regions of Interest(弥合几何和用户意图之间的差距:通过兴趣区域检索CAD模型)

2023 Computer-Aided Design

摘要

CAD模型检索是提高产品设计和开发效率的关键功能。基于内容的检索解决方案面临的一个主要挑战是如何弥合几何信息和设计意图之间的语义差距。当前的检索解决方案缺乏根据用户解释和应用程序上下文定制搜索结果的能力。这项工作提出了一个基于异构CAD模型集合的交互式检索系统,该系统利用用户定义的兴趣区域(roi)以直观的方式表达设计意图。我们提出的系统使用自监督学习技术来捕获细微的语义形状关系,并采用非穷举搜索技术来实时执行大规模的部分形状匹配。我们报告了在三个机械部件数据集上的显著性能提高。我们还概述了该方法对大型数据集和多模态数据的可扩展性。

贡献

  • 我们引入了一种以用户为中心的方法,通过roi的规范和相关性加权来定制部分相似性搜索以适应设计意图。
  • 我们提出了混合层次形状签名,将全局水平上的自监督学习技术与局部区域上的经典基于特征的描述符相结合,形成简洁的基于向量的形状表示。
  • 我们提出了一个纯粹基于矢量的系统骨架,它具有高效的索引结构,可以在多个分辨率级别上保存局部形状描述符,以实现大规模的实时部分检索。

框架

在这里插入图片描述

总结

这项工作为通过用户定义的roi在异构CAD模型集合中进行交互式形状检索提供了一个新的视角,以支持关于设计意图和上下文的设计相似性的模糊概念。我们提出的系统使用自监督学习技术来捕获细微的语义形状关系。我们采用基于向量的方法,利用高效的相似性搜索结构进行实时、可扩展的零件到零件匹配。我们展示了我们的用户导向检索系统在三个机械部件数据集上优于全局形状检索的性能,并进一步展示了交互式、用户导向搜索的定性优势。我们讨论了现有形状检索基准在测量歧义、局部设计相似性方面的缺点,并在两个数据集上制定了面向设计的、细粒度的检索任务。

两个数据集上制定了面向设计的、细粒度的检索任务。

未来工作的一个方向是结合多模态CAD信息,如标签和拓扑信息。这一目标是建立一个基于各种可用CAD模型信息的整体检索系统。我们的检索系统的底层“anything-to - vector”方案允许合并其他模态的数据,如结构属性(graph2vec[64])和基于文本的属性(word2vec[65]),遵循与几何形状数据相同的原则。此外,目前的实现没有考虑特征的空间和层次排列的相似性。一个有趣的研究方向是在保持有效的数据存储结构的同时,对相似性比较中特征关系的约束进行建模。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值