题目描述
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 n 张地毯,编号从 1 到n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
输入格式
输入共 n + 2行。
第一行,一个整数 n,表示总共有 n 张地毯。
接下来的 n行中,第 i+1行表示编号 i 的地毯的信息,包含四个整数 a ,b ,g ,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 (a, b)以及地毯在 x轴和 y轴方向的长度。
第 n + 2行包含两个整数 x和 y,表示所求的地面的点的坐标 (x, y)。
输出格式
输出共 1行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1。
样例 1
样例输入
3
1 0 2 3
0 2 3 3
2 1 3 3
2 2
样例输出
3
样例2
样例输入 2
3
1 0 2 3
0 2 3 3
2 1 3 3
4 5
样例输出
-1
提示
【样例解释 1】
如下图,1 号地毯用实线表示,2 号地毯用虚线表示,3号用双实线表示,覆盖点 (2,2)的最上面一张地毯是 3号地毯。
【数据范围】
对于 30%的数据,有 。
对于50%的数据,。
对于 100% 的数据,有 , 。
思路
首先容易想到是开辟一个 N*N 的二位数组, 但是 n的范围是
数组大小:
内存大小一定会超
代码思路:对于覆盖求(x,y)上的最上面的那张地毯的编号,从后往前计算就是第一张覆盖在(x,y)的地毯编号是什么,即倒序遍历即可
题目给出的是矩形左下方的顶点坐标(sx,sy),用不等式求所符合的范围:
#include<iostream>
#include<cstdio>
using namespace std;
const int MAX = 10000+5;
int n;
//左下表顶点(a,b),x为矩形在x轴方向的长,y为矩形在y轴方向上的宽
int a[MAX],b[MAX],x[MAX],y[MAX];//全局变量初始化默认为0
int sx,sy;
int main()
{
int n;
cin>>n;
for(int i = 1;i <= n;i++)
{
cin>>a[i]>>b[i]>>x[i]>>y[i];
}
cin>>sx>>sy;
int flag = -1;
for(int i = n;i > 0;i--)
{
if((sx >= a[i] && sx <= a[i] + x[i])&&(sy >= b[i] && sy <= b[i] + y[i]))
{
flag = i;
break;//结束循环
}
}
cout<<flag<<endl;
return 0;
}