一道数论题,题意大致是判断一个数m是不是另一个数n的阶乘的因子。判断其实也非常的简单就是看m的因子的的个数是否多于n的阶乘中相应的因子的个数;而计算n的阶乘中因子p的个数由一个算法计算代码如下</span>
int Cal(int w, int p) //计算w的阶乘中有多少个p
{
int ans = 0;
while(w)
{
w /= p;
ans += w;
}
return ans;
}
而最后实现的代码是
h = n;
j = 0;
while(h)
{
h /= p[i];
j += h;
}
其中j是最终的计数的个数;
最终的代码如下
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <functional>
#include <cstdio>
#include <queue>
#include <map>
#include <algorithm>
#include <stack>
#include <utility>
typedef long long ll;
using namespace std;
const int mx = 100000;
int cnt,N,p[mx];
bool tag[mx];
void get_prime ()
{
int i,j;
cnt = 0;
N = mx;
for(i = 2; i < N; i ++)
{
if(!tag[i]) p[cnt++] = i;
for(j = 0; i * p[j] < N&&j < cnt; j++)
{
tag[i *p[j]] = 1;
if(i % p[j] == 0)
break;
}
}
}
int main ()
{
bool OK;
int k,i,l,j,h;
int n,m;
get_prime ();
while (~scanf("%d%d",&n,&m))
{
if(n >= m)
{
printf("%d divides %d!\n",m,n);
continue;
}
OK = true;
l = m;
for(i = 0; i < cnt && p[i] * p[i] <= m &&OK; i++)
if(m % p[i] == 0)
{
k = 0;
while(m % p[i] == 0)
{
k++;
m = m / p[i];
}
h = n;
j = 0;
while(h)
{
h /= p[i];
j += h;
}
if(k > j)
OK = false;
}
if(m != 1 && n < m)
OK = false;
if(OK) printf("%d divides %d!\n",l,n);
else printf("%d does not divide %d!\n",l,n);
}
return 0;
}
一开始写的时候wa了好多发,主要原因是在处理最终m最终还是一个质数的情况,一开始想的是如果m没有被分成1都不行,可是最后发现只要m小于n就行。