Sqoop 是 apache 下用于 RDBMS 和 HDFS 互相导数据的工具。本文以 mysql 数据库为例,实现关系数据库导入到 hdfs 和 hive。
1. 安装 Sqoop
使用 rpm 安装即可。
yum install sqoop sqoop-metastore -y
安装完之后需要下载 mysql jar 包到 sqoop 的 lib 目录。
这里使用 hive 的 metastore 的 mysql 数据库作为关系数据库,以 TBLS 表为例,该表结构和数据如下:
mysql> select * from TBLS limit 3;
+------+-----------+-----+----------------+-----+--------+------+---------+----------------+------------------+-------------------+
|TBL_ID|CREATE_TIME|DB_ID|LAST_ACCESS_TIME|OWNER|RETENTI | SD_ID| TBL_NAME| TBL_TYPE |VIEW_EXPANDED_TEXT| VIEW_ORIGINAL_TEXT|
+------+-----------+-----+----------------+-----+--------+------+---------+----------------+------------------+-------------------+
| 34|1406784308 | 8| 0|root | 0| 45| test1 | EXTERNAL_TABLE | NULL | NULL |
| 40|1406797005 | 9| 0|root | 0| 52| test2 | EXTERNAL_TABLE | NULL | NULL |
| 42|1407122307 | 7| 0|root | 0| 59| test3 | EXTERNAL_TABLE | NULL | NULL |
+------+-----------+-----+----------------+-----+--------+------+---------+----------------+------------------+-------------------+
2. 使用
2.1 命令说明
查看 sqoop 命令说明:
$ sqoop help
usage: sqoop COMMAND [ARGS]
Available commands:
codegen Generate code to interact with database records
create-hive-table Import a table definition into Hive
eval Evaluate a SQL statement and display the results
export Export an HDFS directory to a database table
help List available commands
import Import a table from a database to HDFS
import-all-tables Import tables from a database to HDFS
list-databases List available databases on a server
list-tables List available tables in a database
version Display version information
See 'sqoop help COMMAND' for information on a specific command.
你也可以查看某一个命令的使用说明:
$ sqoop import --help
$ sqoop help import
你也可以使用别名来代替 sqoop (toolname)
:
$ sqoop-import
sqoop import 的一个示例如下:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS
你还可以使用 --options-file
来传入一个文件,使用这种方式可以重用一些配置参数:
$ sqoop --options-file /users/homer/work/import.txt --table TEST
/users/homer/work/import.txt 文件内容如下:
import
--connect
jdbc:mysql://192.168.56.121:3306/metastore
--username
hiveuser
--password
redhat
2.2 导入数据到 hdfs
使用 sqoop-import 命令可以从关系数据库导入数据到 hdfs。
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --target-dir /user/hive/result
注意:
- mysql jdbc url 请使用 ip 地址
- 如果重复执行,会提示目录已经存在,可以手动删除
- 如果不指定
--target-dir
,导入到用户家目录下的 TBLS 目录
你还可以指定其他的参数:
参数 | 说明 |
---|---|
--append | 将数据追加到hdfs中已经存在的dataset中。使用该参数,sqoop将把数据先导入到一个临时目录中,然后重新给文件命名到一个正式的目录中,以避免和该目录中已存在的文件重名。 |
--as-avrodatafile | 将数据导入到一个Avro数据文件中| |
--as-sequencefile | 将数据导入到一个sequence文件中 |
--as-textfile | 将数据导入到一个普通文本文件中,生成该文本文件后,可以在hive中通过sql语句查询出结果。 |
--boundary-query <statement> | 边界查询,也就是在导入前先通过SQL查询得到一个结果集,然后导入的数据就是该结果集内的数据,格式如:--boundary-query 'select id,no from t where id = 3' ,表示导入的数据为id=3的记录,或者 select min(<split-by>), max(<split-by>) from <table name> ,注意查询的字段中不能有数据类型为字符串的字段,否则会报错 |
--columns<col,col> | 指定要导入的字段值,格式如:--columns id,username |
--direct | 直接导入模式,使用的是关系数据库自带的导入导出工具。官网上是说这样导入会更快 |
--direct-split-size | 在使用上面direct直接导入的基础上,对导入的流按字节数分块,特别是使用直连模式从PostgreSQL导入数据的时候,可以将一个到达设定大小的文件分为几个独立的文件。 |
--inline-lob-limit | 设定大对象数据类型的最大值 |
-m,--num-mappers | 启动N个map来并行导入数据,默认是4个,最好不要将数字设置为高于集群的节点数 |
--query,-e <sql> | 从查询结果中导入数据,该参数使用时必须指定–target-dir 、–hive-table ,在查询语句中一定要有where条件且在where条件中需要包含 \$CONDITIONS ,示例:--query 'select * from t where \$CONDITIONS ' --target-dir /tmp/t –hive-table t |
--split-by <column> | 表的列名,用来切分工作单元,一般后面跟主键ID |
--table <table-name> | 关系数据库表名,数据从该表中获取 |
--delete-target-dir | 删除目标目录 |
--target-dir <dir> | 指定hdfs路径 |
--warehouse-dir <dir> | 与 --target-dir 不能同时使用,指定数据导入的存放目录,适用于hdfs导入,不适合导入hive目录 |
--where | 从关系数据库导入数据时的查询条件,示例:--where "id = 2" |
-z,--compress | 压缩参数,默认情况下数据是没被压缩的,通过该参数可以使用gzip压缩算法对数据进行压缩,适用于SequenceFile, text文本文件, 和Avro文件 |
--compression-codec | Hadoop压缩编码,默认是gzip |
--null-string <null-string> | 可选参数,如果没有指定,则字符串null将被使用 |
--null-non-string <null-string> | 可选参数,如果没有指定,则字符串null将被使用| |
示例程序:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --columns "tbl_id,create_time" --where "tbl_id > 1" --target-dir /user/hive/result
使用 sql 语句
参照上表,使用 sql 语句查询时,需要指定 $CONDITIONS
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --query 'SELECT * from TBLS where \$CONDITIONS ' --split-by tbl_id -m 4 --target-dir /user/hive/result
上面命令通过 -m 1
控制并发的 map 数。
使用 direct 模式:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --delete-target-dir --direct --default-character-set UTF-8 --target-dir /user/hive/result
指定文件输出格式:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by "\t" --lines-terminated-by "\n" --delete-target-dir --target-dir /user/hive/result
这时候查看 hdfs 中数据(观察分隔符是否为制表符):
$ hadoop fs -ls result
Found 5 items
-rw-r--r-- 3 root hadoop 0 2014-08-04 16:07 result/_SUCCESS
-rw-r--r-- 3 root hadoop 69 2014-08-04 16:07 result/part-m-00000
-rw-r--r-- 3 root hadoop 0 2014-08-04 16:07 result/part-m-00001
-rw-r--r-- 3 root hadoop 142 2014-08-04 16:07 result/part-m-00002
-rw-r--r-- 3 root hadoop 62 2014-08-04 16:07 result/part-m-00003
$ hadoop fs -cat result/part-m-00000
34 1406784308 8 0 root 0 45 test1 EXTERNAL_TABLE null null null
$ hadoop fs -cat result/part-m-00002
40 1406797005 9 0 root 0 52 test2 EXTERNAL_TABLE null null null
42 1407122307 7 0 root 0 59 test3 EXTERNAL_TABLE null null null
指定空字符串:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by "\t" --lines-terminated-by "\n" --delete-target-dir --null-string '\\N' --null-non-string '\\N' --target-dir /user/hive/result
如果需要指定压缩:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by "\t" --lines-terminated-by "\n" --delete-target-dir --null-string '\\N' --null-non-string '\\N' --compression-codec "com.hadoop.compression.lzo.LzopCodec" --target-dir /user/hive/result
附:可选的文件参数如下表。
参数 | 说明 |
---|---|
--enclosed-by <char> | 给字段值前后加上指定的字符,比如双引号,示例:--enclosed-by '\"' ,显示例子:"3","jimsss","dd@dd.com" |
--escaped-by <char> | 给双引号作转义处理,如字段值为"测试",经过 --escaped-by "\\" 处理后,在hdfs中的显示值为:\"测试\" ,对单引号无效 |
--fields-terminated-by <char> | 设定每个字段是以什么符号作为结束的,默认是逗号,也可以改为其它符号,如句号. ,示例如:--fields-terminated-by |
--lines-terminated-by <char> | 设定每条记录行之间的分隔符,默认是换行串,但也可以设定自己所需要的字符串,示例如:--lines-terminated-by "#" 以#号分隔 |
--mysql-delimiters | Mysql默认的分隔符设置,字段之间以, 隔开,行之间以换行\n 隔开,默认转义符号是\ ,字段值以单引号' 包含起来。 |
--optionally-enclosed-by <char> | enclosed-by是强制给每个字段值前后都加上指定的符号,而--optionally-enclosed-by 只是给带有双引号或单引号的字段值加上指定的符号,故叫可选的 |
2.3 创建 hive 表
生成与关系数据库表的表结构对应的HIVE表:
$ sqoop create-hive-table --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS
参数 | 说明 |
---|---|
--hive-home <dir> | Hive的安装目录,可以通过该参数覆盖掉默认的hive目录 |
--hive-overwrite | 覆盖掉在hive表中已经存在的数据 |
--create-hive-table | 默认是false,如果目标表已经存在了,那么创建任务会失败 |
--hive-table | 后面接要创建的hive表 |
--table | 指定关系数据库表名 |
2.4 导入数据到 hive
执行下面的命令会将 mysql 中的数据导入到 hdfs 中,然后创建一个hive 表,最后再将 hdfs 上的文件移动到 hive 表的目录下面。
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by "\t" --lines-terminated-by "\n" --hive-import --hive-overwrite --create-hive-table --hive-table dw_srclog.TBLS --delete-target-dir
说明:
- 可以在 hive 的表名前面指定数据库名称
- 可以通过
--create-hive-table
创建表,如果表已经存在则会执行失败
接下来可以查看 hive 中的数据:
$ hive -e 'select * from dw_srclog.tbls'
34 1406784308 8 0 root 0 45 test1 EXTERNAL_TABLE null null NULL
40 1406797005 9 0 root 0 52 test2 EXTERNAL_TABLE null null NULL
42 1407122307 7 0 root 0 59 test3 EXTERNAL_TABLE null null NULL
直接查看文件内容:
$ hadoop fs -cat /user/hive/warehouse/dw_srclog.db/tbls/part-m-00000
34140678430880root045go_goodsEXTERNAL_TABLEnullnullnull
40140679700590root052merchantEXTERNAL_TABLEnullnullnull
从上面可见,数据导入到 hive 中之后分隔符为默认分隔符,参考上文你可以通过设置参数指定其他的分隔符。
另外,Sqoop 默认地导入空值(NULL)为 null 字符串,而 hive 使用 \N 去标识空值(NULL),故你在 import 或者 export 时候,需要做相应的处理。在 import 时,使用如下命令:
$ sqoop import ... --null-string '\\N' --null-non-string '\\N'
在导出时,使用下面命令:
$ sqoop import ... --input-null-string '' --input-null-non-string ''
一个完整的例子如下:
$ sqoop import --connect jdbc:mysql://192.168.56.121:3306/metastore --username hiveuser --password redhat --table TBLS --fields-terminated-by "\t" --lines-terminated-by "\n" --hive-import --hive-overwrite --create-hive-table --hive-table dw_srclog.TBLS --null-string '\\N' --null-non-string '\\N' --compression-codec "com.hadoop.compression.lzo.LzopCodec"
2.5 增量导入
参数 | 说明 |
---|---|
--check-column (col) | 用来作为判断的列名,如id |
--incremental (mode) | append:追加,比如对大于last-value指定的值之后的记录进行追加导入。lastmodified:最后的修改时间,追加last-value指定的日期之后的记录 |
--last-value (value) | 指定自从上次导入后列的最大值(大于该指定的值),也可以自己设定某一值 |
2.6 合并 hdfs 文件
将HDFS中不同目录下面的数据合在一起,并存放在指定的目录中,示例如:
sqoop merge –new-data /test/p1/person –onto /test/p2/person –target-dir /test/merged –jar-file /opt/data/sqoop/person/Person.jar –class-name Person –merge-key id
其中,–class-name
所指定的 class 名是对应于 Person.jar 中的 Person 类,而 Person.jar 是通过 Codegen 生成的
参数 | 说明 |
---|---|
--new-data <path> | Hdfs中存放数据的一个目录,该目录中的数据是希望在合并后能优先保留的,原则上一般是存放越新数据的目录就对应这个参数。 |
--onto <path> | Hdfs中存放数据的一个目录,该目录中的数据是希望在合并后能被更新数据替换掉的,原则上一般是存放越旧数据的目录就对应这个参数。 |
--merge-key <col> | 合并键,一般是主键ID |
--jar-file <file> | 合并时引入的jar包,该jar包是通过Codegen工具生成的jar包 |
--class-name <class> | 对应的表名或对象名,该class类是包含在jar包中的。 |
--target-dir <path> | 合并后的数据在HDFS里的存放目录 |