2024年最新2024京东Python面试真题,更加适合python小白的object类的特殊方法~_python objected(2),2024年最新吊打面试官 敖丙

收集整理了一份《2024年最新Python全套学习资料》免费送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来

如果你需要这些资料,可以添加V无偿获取:hxbc188 (备注666)
img

正文

而__getattr__只在属性不存在时调用,
默认会抛出 AttributeError: ‘Foo’ object has no attribute ‘age’
这样的错误,
但我们可以对其进行重写,
做我们需要的操作:

class Foo(object):
    def \_\_init\_\_(self):
        self.name = 'Alex'

    def \_\_getattribute\_\_(self, item):
        print("\_\_getattribute\_\_ in Foo")
        return object.__getattribute__(self, item)

    def \_\_getattr\_\_(self, item):
        print("%s不存在,但我可以返回一个值" % item)
        return 54


if __name__ == '\_\_main\_\_':
    f = Foo()
    print(f.name) 
    print(f.age)  

返回结果:

__getattribute__ in Foo
Alex
__getattribute__ in Foo
age不存在,但我可以返回一个值
54

我们看到,
f.name和f.age都调用了__getattribute__方法,
但是只有f.age时调用了__getattr__方法。
所以,我们可以利用__getattr__做很多事情,
例如从类中的一个字典中取值,
或者处理异常等。

2.__setattr__方法
当我们执行obj.name='alex’或setattr(obj,属性名,属性值),
即为属性赋值时被调用。

class Foo(object):
    def \_\_init\_\_(self):
        self.name = 'Alex'

    def \_\_setattr\_\_(self, key, value):
        print('setattr')
        return object.__setattr__(self, key, value)


if __name__ == '\_\_main\_\_':
    f = Foo()
    f.name = 'Jone' 
    print(f.name)

如果__setattr__被重写(不调用父类__setattr__的话)。
则使用obj.xxx=value赋值就无法工作了。

特别注意,
在类的构造函数中对属性进行初始化赋值时也是调用了该方法:

class Foo(object):
    def \_\_init\_\_(self):
        self.name = 'Alex' 
  ...

当我们需要重写__setattr__方法的时候,
就要注意初始化时要使用object类的__setattr__来初始化:

class Local(object):
    def \_\_init\_\_(self):
       
        object.__setattr__(self, 'DIC', {})

    def \_\_setattr\_\_(self, key, value):
        self.DIC[key] = value

    def \_\_getattr\_\_(self, item):
        return self.DIC.get(item, None)


if __name__ == '\_\_main\_\_':
    obj = Local()
    obj.name = 'Alex'  
    print(obj.name) 

3.__delattr__方法

这个方法对应del obj.属性名
和delattr(obj,属性名)两种操作时被调用。
即,删除对象中的某个属性。

4.__dir__方法

对应dir(obj)获取对象中所有的属性名,
包括所有的属性和方法名。

f = Foo()
print(f.__dir__()) 

返回一个列表。

5.eq__和__hash
eq__是判断obj==other的时候调用的,
默认调用的是object继承下去的__eq

f1 = Foo()
f2 = f1
print(f1 == f2) 
print(f1 is f2)  
print(hash(f1) == hash(f2)) 

默认情况下,
f1 == f2,f1 is f2,hash(f1)==hash(f2)
都应该同时为True(或不相等,同为False)。

如果我们重写了__eq__方法,
例如两个对象的比较变成比较其中的一个属性:

class Foo(object):
    def \_\_init\_\_(self):
        self.name = 'Alex' 
        self.ccc = object.__class__
    def \_\_eq\_\_(self, other):
        return self.name==other.name

即,如果self.name==other.name,
则认为对象相等。

f1 = Foo()
f2 = Foo()
print(f1 == f2)  # True
print(f1 is f2)  # False
print(hash(f1) == hash(f2))  

为什么hash会抛出异常,这是因为如果我们在某个类中重写了__eq__方法,则默认会将__hash__=None。所以,当我们调用hash(obj)时,__hash__方法无法执行。

总结:

当我们实现的类想成为不可hash的类,则可以重写__eq__方法,然后不重写__hash__,__hash__方法会被置None,该类的对象就不可hash了。

默认提供的__hash__方法(hash(obj))对于值相同的变量(类型有限制,有些类型不能hash,例如List),同解释器下hash值相同,而不同解释器下hash值不同。所以,如果我们想要hash一个目标,应该使用hashlib模块。

hash和id的区别,理论上值相同的两个对象hash值应该相同,而id可能不同(必须是同一个对象,即内存地址相同,id才相同。id(obj)是obj的唯一标识。)

6.gtltgele
这几个都是用于比较大小的,我们可以对其进行重写,来自定义对象如何比较大小(例如只比较对象中其中一个属性的值)。

7.str__和__repr
__str__用于定义print(obj)时打印的内容。

class Foo(object):
    def \_\_init\_\_(self):
        self.name = 'Alex'

    def \_\_str\_\_(self):
        return "我是Foo"


if __name__ == '\_\_main\_\_':
    f1 = Foo()
    print(f1)  

在命令行下:

>>> class Foo(object):
...     def \_\_str\_\_(self):
...             return "我是Foo"
...
>>> f1 = Foo()
>>> print(f1)
我是Foo
>>> f1
<__main__.Foo object at 0x0000023BF701C550>、

可以看到,使用__str__的话,
print可以打印我们指定的值,
而命令行输出则是对象的内存地址。

repr__用于同时定义python命令行输出obj的内容,
以及print(obj)的打印内容(前提是没有重写__str
)。

class Foo(object):
    def \_\_init\_\_(self):
        self.name = 'Alex'

    def \_\_repr\_\_(self):
        return "我是Foo"


if __name__ == '\_\_main\_\_':
    f1 = Foo()
    print(f1)  # 打印 我是Foo

在命令行下:

>>> class Foo(object):
...     def \_\_repr\_\_(self):
...             return "我是Foo"
...
>>> f1 = Foo()
>>> print(f1)
我是Foo
>>> f1
我是Foo

可以看到,我们只重写了__repr__,
但是print和直接输出都打印了我们指定的值。

当我们同时重写__str__和__repr__时:

>>> class Foo():
...     def \_\_str\_\_(self):
...             return "我是Foo---str"
...     def \_\_repr\_\_(self):
...             return "我是Foo---repr"
...
>>> f1 = Foo()
>>> print(f1)
我是Foo---str
>>> f1
我是Foo---repr

可以看到,在同时重写两个方法时,
__str__负责print的信息,
而__repr__负责命令行直接输出的信息。

8.__new__方法

__new__方法是一个静态方法,
在调用时,
传入你需要实例化的类名以及初始化参数列表。

例如:

class Foo(object):
    """
 这是一个类,名叫Foo
 """
    def \_\_init\_\_(self, name, age):  
        print("执行\_\_init\_\_方法")
        self.name = name
        self.age = age

    def \_\_new\_\_(cls, \*args, \*\*kwargs):  
        print("执行\_\_new\_\_方法")
        ret = object.__new__(cls)  
        print(ret)  
        return ret 

注意一下几点:

1)__new__在object被指定为@staticmethod,但更像是一个@classmethod,第一个参数传入类本身cls。

2)__new__在__init__之前运行,为传入的类(Foo)生成一个实例并返回。

3)__init__在__new__之后执行,为__new__返回的类实例进行初始化。

4)__init__是一个实例方法,是由实例来调用的。所以要执行__init__方法,必须先要由__new__生产一个实例。这就是为什么先执行__new__方法的原因。

9.__sizeof__方法
这里注意两个获取占用内存空间的方法,
一个就是对象的__sizeof__方法,
另一个是sys.getsizeof方法,
sys.getsizeof方法中调用了对应对象的__sizeof__方法。

我们通过实验,看看这另个方法有什么不同:

class WithoutAttr(object):
    pass

class WithAttr(object):

    def \_\_init\_\_(self, name, age):
        self.name = name
        self.age1 = age

if __name__ == '\_\_main\_\_':
    without_attr = WithoutAttr()
    with_attr = WithAttr("Alex", age=32)
    print(without_attr.__sizeof__()) 
    print(with_attr.__sizeof__())  
    print(sys.getsizeof(without_attr))  
    print(sys.getsizeof(with_attr)) 

我们可以看到,
sys.getsizeof方法的值比__sizeof__的值大24。
这24个bytes应该是gc管理所消耗的空间。

而且这两个方法的返回值大小都没有包含对象中的属性,
也就是说在垃圾回收的时候,
除了通过getsizeof方法获取对象本身大小,
还要额外通过其他办法去获取其属性的大小,
并进行回收。

观察list对象的占用空间:

list1 = [1, 2, 3, 4, 5, 6]
list2 = [1, 2, 3, 4, 5, 6, 7]
list3 = [1, 2, 3, 4, 5, 6, 7, 'string']
list4 = [1, 2, 3, 4, 5, 6, 7, Foo('Leo', age=32)]
print(list1.__sizeof__()) 
print(sys.getsizeof(list1))  
print(sys.getsizeof(list2))  
print(sys.getsizeof(list3))  
print(sys.getsizeof(list4))  

同样的,getsizeof()比__sizeof__多24bytes。

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

如果你需要这些资料,可以添加V无偿获取:hxbc188 (备注666)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

如果你需要这些资料,可以添加V无偿获取:hxbc188 (备注666)
[外链图片转存中…(img-IYaK9Obi-1713813322491)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值