题意:
已知树结点为互不相等且不等于0的整数。请编写程序找出非空树中两个结点的最近公共祖先。例如对于图1(a)所示的树t,结点1和2的最近公共祖先是5;结点2和4的最近公共祖先是8。
输入格式:
每个测试点包含多组数据,第1行为一个正整数T,表示数组组数。每组数据为2行,第1行为一组用空格间隔的整数,个数不超过100个,表示带空指针信息的二叉树先根序列。其中空指针信息用0表示。第2行为空格间隔的两个互不相等的整数A和B,表示给定的两个结点值,保证A和B肯定在输入的树中。
注:我们已知二叉树与其自然对应的树相比,二叉树中结点的左孩子对应树中结点的左孩子,二叉树中结点的右孩子对应树中结点的右兄弟。进而我们可以利用“带空指针信息的先根序列构建二叉树”的方法来构建其对应的树的左孩子-右兄弟存储结构。如8 5 1 0 6 0 2 0 0 3 4 0 0 7 0 0 0对应图1(a)所示的树,1 2 0 3 0 4 0 0 0对应如图1(b)所示的树。
输出格式:
对每组数据输出一行,为一个整数,表示A和B的最近公共祖先结点的值。
输入样例1:
2
8 5 1 0 6 0 2 0 0 3 4 0 0 7 0 0 0
1 2
8 5 1 0 6 0 2 0 0 3 4 0 0 7 0 0 0
2 4
输出样例1:
5
8
首先要解决这道题就要先了解题意,题目中实际上讲的是二叉树的孩子兄弟表示法
,通常又被称为二叉树表示法
或二叉链表表示法
,那什么是二叉树的孩子兄弟表示法,下面先简单介绍一下:
假设有一棵普通的二叉树如图:
图1
树结构中,位于同一层的节点之间互为兄弟节点。例如,图 1 的普通树中,节点 A、B 和 C 互为兄弟节点,而节点 D、E 和 F 也互为兄弟节点。
孩子兄弟表示法,采用的是链式存储结构,其存储树的实现思想是:从树的根节点开始,依次用链表存储各个节点的孩子节点和兄弟节点。
因此,该链表中的节点应包含以下 3 部分内容(如图 2 所示):
- 节点的值;
- 指向孩子节点的指针;
- 指向兄弟节点的指针;
图2
以图 1 为例,使用孩子兄弟表示法进行存储的结果如下图所示:
图3
由图 3 可以看到,节点 R 无兄弟节点,其孩子节点是 A;节点 A 的兄弟节点分别是 B 和 C,其孩子节点为 D,依此类推。
以上就是图1的普通树转换成孩子兄弟表示法存储的结构图。
至此,明白了什么是二叉树的孩子兄弟表示法,也就可以着手解题了:
解题思路:题目给的是构造孩子兄弟表示法的先序序列,所以根据递归,就可以先构造出二叉树的孩子兄弟表示法构造树。也就是根据题目给出的顺序,依次按照
当前节点
->左子树
->右子树
的顺序,依次构造,构造过程中遇到0就return
。
这一步的主要代码:
void build(int idx) {
if(tree[t2]==0) {
t2++;
return;
}
childBro[idx]=tree[t2++];
build(2*idx+1);
build(2*idx+2);
}
通过这一步就能得到像图3所示的构造树,可自行演算一遍。
得到二叉树的孩子兄弟构造树(以下称
构造树A
)后,就可以着手构造如图1所示的普通树。思路:从根节点
开始向下递归,将构造树A
中当前节点的左子树
作为新构造树中当前节点的左子树
,将构造树A
中当前节点的右子树
作为新构造树中当前节点的兄弟节点
。继续递归,遇到构造树A中节点为0的就return
。构造过程中将元素与下标的对应关系进行记录。
主要代码:
void build2(int idx,int k) {
if(childBro[k]==0)
return;
common[idx]=childBro[k];
book[childBro[k]]=idx;//将下标与元素联系起来
build2(3*idx+1,2*k+1);
build2(idx+1,2*k+2);
}
通过上面这一步就已经得到了二叉树的普通树表示,接下来就是找到最近公共祖先了。思路:先找出
n
和m
的下标,将大的下标向小的下标靠近,靠近过程中如果遇到n=m
即可结束,否则等这一步完成后,就是分别将向上找寻n
和m
的父节点了,直到找到相同的父节点下标,说明是最近的公共祖先。至此,程序结束。
完整代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int tree[105];
int childBro[105],common[105],book[105];//book存储元素的下标 ,childBro是孩子兄弟表示法的构造,common是普通树的构造
int t2=0;
//二叉树孩子兄弟表示法:左边存储左孩子,右边存储兄弟节点
//解题思路:先构造二叉树孩子兄弟表示法,再根据孩子兄弟表示法构造出题目所示的二叉树
//构造成孩子兄弟表示法
void build(int idx) {
if(tree[t2]==0) {
t2++;
return;
}
childBro[idx]=tree[t2++];
build(2*idx+1);
build(2*idx+2);
}
//转换成题目所示
void build2(int idx,int k) {
if(childBro[k]==0)
return;
common[idx]=childBro[k];
book[childBro[k]]=idx;
build2(3*idx+1,2*k+1);
build2(idx+1,2*k+2);
}
int main() {
int t;
cin>>t;
while(t--) {
memset(childBro,0,sizeof childBro);
memset(common,0,sizeof common);
memset(tree,0,sizeof tree);
memset(book,0,sizeof book);
int t1=0;
t2=0;
int a,num=0;
while(scanf("%d",&a)) {
if(a==0)
num++;
else {
num=0;
}
tree[t1++]=a;
if(num==3)
break;
}
build(0);
build2(0,0);
int n,m;
cin>>n>>m;
n=book[n];
m=book[m];
if(n<m)
swap(n,m);
while(n>m) {
n=(n-1)/3;
}
if(n==m)
cout<<common[n]<<endl;
else {
while(n!=m) {
m=(m-1)/3;
if(n==m){
break;
}
n=(n-1)/3;
}
cout<<common[n]<<endl;
}
}
return 0;
}
提交结果:
参考文章与图片来源 http://c.biancheng.net/view/3396.html