bzoj3991 [SDOI2015]寻宝游戏 (虚树+set+dfs序 )

2 篇文章 0 订阅

bzoj3991 [SDOI2015]寻宝游戏

原题地址http://www.lydsy.com/JudgeOnline/problem.php?id=3991

题意:
一棵n个节点的树,m个操作,每次取消或添加一个关键点,每次操作输出求包含当前这些关键点虚树的路径和的两倍。

数据范围
1<=N<=100000

1<=M<=100000

对于全部的数据,1<=z<=10^9

题解:
(今天的t3)

答案为按DFS序排序后相邻两个关键点的间距离和加上首尾两个点的距离。
于是乎把所有的关键点塞进set里,维护一个sum。
set中在其前一个的为pre,在其后一个的为nxt
删除一个点就加上pre与nxt之间的距离,减去其与pre,其与nxt的距离。
加入一个点就减去pre与nxt之间的距离,加上其与pre,其与nxt的距离。
求距离就简单地求下lca。
注意答案还要加上首尾两个点的距离,另外为了方便处理没有pre或没有nxt的情况,可以先往set中加入0和n+1便于特判。

(get了访问set中前/后一个元素的方法:int pre=* –S.find(dfn[x]); int nxt=* ++S.find(dfn[x]);)
(现在知道虚树为何,膜你抄全歌词达成☆)

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<set>
#define LL long long
using namespace std;
const int N=200005;
const int P=18;
set<int> S;
int n,m,head[N],to[2*N],nxt[2*N],num=0;
int dep[N],dfn[N],seq[N],inc=0,anc[N][P+5];
LL w[2*N],dis[N];
bool vis[N];
LL sum=0;
void build(int u,int v,LL ww)
{
    num++;
    to[num]=v;
    nxt[num]=head[u];
    w[num]=ww;
    head[u]=num;
}
void dfs(int u,int f)
{
    inc++; 
    anc[u][0]=f;
    for(int i=1;i<P;i++)
    anc[u][i]=anc[anc[u][i-1]][i-1];
    seq[inc]=u; dfn[u]=inc;
    dep[u]=dep[f]+1;
    for(int i=head[u];i;i=nxt[i])
    {
        int v=to[i];
        if(v==f) continue;
        dis[v]=dis[u]+w[i];
        dfs(v,u);
    }
}
int getlca(int u,int v)
{
    if(dep[u]<dep[v]) swap(u,v);

    int d=dep[u]-dep[v];
    for(int i=0;d;d>>=1,i++)
    if(d&1) u=anc[u][i];
    if(u==v) return u;
    for(int i=P-1;i>=0;i--)
    if(anc[u][i]!=anc[v][i])
    {u=anc[u][i]; v=anc[v][i];}
    return anc[u][0];

}
LL cul(int u,int v)
{   
    int lca=getlca(u,v);
    return dis[u]+dis[v]-2*dis[lca];
}
int main()
{
    memset(head,0,sizeof(head));
    memset(vis,0,sizeof(vis));
    scanf("%d%d",&n,&m);
    for(int i=1;i<n;i++)
    {
        int u,v; LL ww;
        scanf("%d%d%lld",&u,&v,&ww);
        build(u,v,ww); build(v,u,ww);
    }
    dfs(1,1);
    S.insert(0); S.insert(n+1);
    while(m--)
    {
        int x;
        scanf("%d",&x);
        if(!vis[x])
        {
            S.insert(dfn[x]);
            int pre=*--S.find(dfn[x]);
            int nxt=*++S.find(dfn[x]);
            if(pre>=1&&nxt<=n)
            sum-=cul(seq[pre],seq[nxt]);
            if(pre>=1) sum+=cul(seq[pre],x);
            if(nxt<=n) sum+=cul(x,seq[nxt]);
            vis[x]=1;
        }
        else
        {
            int pre=*--S.find(dfn[x]);
            int nxt=*++S.find(dfn[x]);
            if(pre>=1&&nxt<=n)
            sum+=cul(seq[pre],seq[nxt]);
            if(pre>=1) sum-=cul(seq[pre],x);
            if(nxt<=n) sum-=cul(x,seq[nxt]);
            vis[x]=0;
            S.erase(dfn[x]);
        }
        LL add;
        int first=*++S.find(0); int last=*--S.find(n+1);
        if(first>n||last<1||first==last) add=0;
        else add=cul(seq[first],seq[last]);
        printf("%lld\n",sum+add);
    }
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值