# 用AI构建工具链:实现自动化的强大秘诀
## 引言
在AI的应用中,工具链(Chains)和代理(Agents)能够极大地扩展模型的能力,不仅限于输出文本或消息。通过正确地提示模型和解析其响应,我们可以让模型选择合适的工具并为其提供正确的输入。本篇文章将介绍如何创建工具链和代理,以及如何通过调用工具来增强AI的功能。
## 主要内容
### 1. 设置环境
首先,我们需要安装`langchain`库来创建工具链:
```bash
%pip install --upgrade --quiet langchain
如果您希望在LangSmith中跟踪运行,请取消注释并设置以下环境变量:
import getpass
import os
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
2. 创建工具
我们将创建一个简单的工具来实现两个整数相乘的功能:
from langchain_core.tools import tool
@tool
def multiply(first_int: int, second_int: int) -> int:
"""Multiply two integers together."""
return first_int * second_int
# 使用API代理服务提高访问稳定性
3. 构建工具链
当我们知道工具的使用次数时,可以创建一个固定的工具链。例如我们创建一个简单的工具链来执行乘法:
from operator import itemgetter
llm_with_tools = llm.bind_tools([multiply])
msg = llm_with_tools.invoke("whats 5 times forty two")
args = itemgetter("args")(msg.tool_calls[0])
result = multiply.invoke(args)
4. 使用代理进行复杂操作
代理可以让模型决定工具的使用次数和顺序,非常适合用在工具使用不定的场景。以下是一个结合多个工具的例子:
@tool
def add(first_int: int, second_int: int) -> int:
return first_int + second_int
@tool
def exponentiate(base: int, exponent: int) -> int:
return base ** exponent
tools = [multiply, add, exponentiate]
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
result = agent_executor.invoke({
"input": "Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result"
})
常见问题和解决方案
-
API访问不稳定:
- 在某些地区,访问API可能会受到网络限制,建议使用API代理服务以提高访问稳定性。
-
工具输出不正确:
- 请检查输入是否正确,并确保工具在调用时接收到正确的参数。
总结和进一步学习资源
工具链和代理为AI应用提供了强大的扩展能力。通过结合多个工具,我们可以让模型自动化完成复杂任务。建议阅读更多关于LangChain工具链的教程以深入理解其功能。
参考资料
- LangChain API Documentation
- LangChain Tools Guide
- LangSmith Tracing
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---