[用AI构建工具链:实现自动化的强大秘诀]

# 用AI构建工具链:实现自动化的强大秘诀

## 引言
在AI的应用中,工具链(Chains)和代理(Agents)能够极大地扩展模型的能力,不仅限于输出文本或消息。通过正确地提示模型和解析其响应,我们可以让模型选择合适的工具并为其提供正确的输入。本篇文章将介绍如何创建工具链和代理,以及如何通过调用工具来增强AI的功能。

## 主要内容

### 1. 设置环境
首先,我们需要安装`langchain`库来创建工具链:

```bash
%pip install --upgrade --quiet langchain

如果您希望在LangSmith中跟踪运行,请取消注释并设置以下环境变量:

import getpass
import os

# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()

2. 创建工具

我们将创建一个简单的工具来实现两个整数相乘的功能:

from langchain_core.tools import tool

@tool
def multiply(first_int: int, second_int: int) -> int:
    """Multiply two integers together."""
    return first_int * second_int

# 使用API代理服务提高访问稳定性

3. 构建工具链

当我们知道工具的使用次数时,可以创建一个固定的工具链。例如我们创建一个简单的工具链来执行乘法:

from operator import itemgetter

llm_with_tools = llm.bind_tools([multiply])
msg = llm_with_tools.invoke("whats 5 times forty two")
args = itemgetter("args")(msg.tool_calls[0])
result = multiply.invoke(args)

4. 使用代理进行复杂操作

代理可以让模型决定工具的使用次数和顺序,非常适合用在工具使用不定的场景。以下是一个结合多个工具的例子:

@tool
def add(first_int: int, second_int: int) -> int:
    return first_int + second_int

@tool
def exponentiate(base: int, exponent: int) -> int:
    return base ** exponent

tools = [multiply, add, exponentiate]
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

result = agent_executor.invoke({
    "input": "Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result"
})

常见问题和解决方案

  1. API访问不稳定

    • 在某些地区,访问API可能会受到网络限制,建议使用API代理服务以提高访问稳定性。
  2. 工具输出不正确

    • 请检查输入是否正确,并确保工具在调用时接收到正确的参数。

总结和进一步学习资源

工具链和代理为AI应用提供了强大的扩展能力。通过结合多个工具,我们可以让模型自动化完成复杂任务。建议阅读更多关于LangChain工具链的教程以深入理解其功能。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值