矩阵快速幂

一、矩阵

1 运算

1.1加减法

要求:两矩阵行列数完全一样

1.2乘除法

要求:第一个矩阵的列数等于第二个矩阵的行数。
一个a行b列乘b行c列 = a行c列
乘法不满足交换律!
但是满足结合律: a × b × c = a × ( b × c ) a\times b\times c=a\times(b\times c) a×b×c=a×(b×c)

1.3 数乘

一个矩阵乘以一个数,等于矩阵中的每个数乘以这个数。

1.4 转置

原先的第一行变成第一列,以此类推。

2 单位元

在一个运算系统中,如果某个元素x和其他元素y做运算,结果依旧是y,那么x就称为这个运算系统中的“单位元”。

2.1 单位矩阵

其主对角线上的元素都是1,其余都是0。
例:
[ 1 0 0 0 1 0 0 0 1 ] \begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{bmatrix} 100010001

二、封装

使用重载运算符和结构体封装会使代码更简洁,同时易于更改。以下是封装代码;

#include<bits/stdc++.h>
#define ll long long
#define bug printf("---OK---")
#define pa printf("A: ")
#define pr printf("\n")
#define pi acos(-1.0)
using namespace std;
struct Mat{
	ll a[105][105];
	ll r,c;
	Mat(ll _r=0,ll _c=0){
		r=_r,c=_c;
		memset(a,0,sizeof a);
		if(c==0){
			c=r;//构造一个方阵
		}
	}
	void unit(){//赋单位矩阵
        memset(a,0,sizeof a);
        for(int i=1;i<=r;i++){
        	a[i][i]=1;
		}
    }
	Mat operator+(const Mat t)const{//加法
		Mat ans(r,c);
		for(int i=1;i<=r;i++){
			for(int j=1;j<=c;j++){
				ans.a[i][j]=a[i][j]+t.a[i][j];
			}
		}
		return ans;
	}
	Mat operator-(const Mat t)const{//减法
		Mat ans(r,c);
		for(int i=1;i<=r;i++){
			for(int j=1;j<=c;j++){
				ans.a[i][j]=a[i][j]-t.a[i][j];
			}
		}
		return ans;
	}
	Mat operator*(const Mat t)const{//乘法
		Mat ans(r,t.r);
		ll n=r,m=t.c;
		for(int i=1;i<=n;i++){
			for(int j=1;j<=m;j++){
				for(int k=1;k<=c;k++){
					ans.a[i][j]+=a[i][k]*t.a[j][k];
				}
			}
		}
		return ans;
	}
	Mat operator%(const ll t)const{//取余
		Mat ans=*this;
		for(int i=1;i<=r;i++){
			for(int j=1;j<=c;j++){
				ans.a[i][j]%=t;
			}
		}
		return ans;
	}
	Mat qpow(ll b,ll p){
        Mat ans(r,c),a= *this;
        ans.unit();
        while(b){
            if(b&1)
                ans=ans*a%p;
            a=a*a%p;
            b>>=1;
        }
        return ans%p;
    }
};
int main(){
	return 0;
}

三、实践

1 斐波那契数列

1.1 题目描述

斐波那契数列是满足如下性质的一个数列:

F n = { 1   ( n ≤ 2 ) F n − 1 + F n − 2   ( n ≥ 3 ) F_n = \left\{\begin{aligned} 1 \space (n \le 2) \\ F_{n-1}+F_{n-2} \space (n\ge 3) \end{aligned}\right. Fn={1 (n2)Fn1+Fn2 (n3)

请你求出 F n   m o d   1 0 9 + 7 F_n \bmod 10^9 + 7 Fnmod109+7 的值。

1.2 思路

首先是原始矩阵 a a a
[ 1 1 0 0 ] \begin{bmatrix} 1&1\\ 0&0\\ \end{bmatrix} [1010]
然后要找到满足斐波那契数列的单位矩阵 b b b
[ 1 1 1 0 ] \begin{bmatrix} 1&1\\ 1&0\\ \end{bmatrix} [1110]
每次使用矩阵快速幂即可。
注意:因为数列前两个都是 1 1 1 ,所以指数为 n − 2 n-2 n2
最后输出 a [ 1 ] [ 1 ] a[1][1] a[1][1]

1.3 代码

#include<bits/stdc++.h>
#define ll long long
#define bug printf("---OK---")
#define pa printf("A: ")
#define pr printf("\n")
#define pi acos(-1.0)
using namespace std;
ll n;
const ll mod=1e9+7;
struct Mat{
	ll a[105][105];
	ll r,c;
	void scan(){//输出
		for(int i=1;i<=r;i++){
			for(int j=1;j<=c;i++){
				scanf("%lld",&a[i][j]);
			}
		}
	}
	Mat(ll _r=0,ll _c=0){
		r=_r,c=_c;
		memset(a,0,sizeof a);
		if(c==0){
			c=r;//构造一个方阵
		}
	}
	void unit(){//赋单位矩阵
        memset(a,0,sizeof a);
        for(int i=1;i<=r;i++){
        	a[i][i]=1;
		}
    }
	Mat operator+(const Mat t)const{//加法
		Mat ans(r,c);
		for(int i=1;i<=r;i++){
			for(int j=1;j<=c;j++){
				ans.a[i][j]=a[i][j]+t.a[i][j];
			}
		}
		return ans;
	}
	Mat operator-(const Mat t)const{//减法
		Mat ans(r,c);
		for(int i=1;i<=r;i++){
			for(int j=1;j<=c;j++){
				ans.a[i][j]=a[i][j]-t.a[i][j];
			}
		}
		return ans;
	}
	Mat operator*(const Mat t)const{//乘法
		Mat ans(r,t.r);
		ll n=r,m=t.c;
		for(int i=1;i<=n;i++){
			for(int j=1;j<=m;j++){
				for(int k=1;k<=c;k++){
					ans.a[i][j]+=a[i][k]*t.a[j][k];
				}
			}
		}
		return ans;
	}
	Mat operator%(const ll t)const{//取余
		Mat ans=*this;
		for(int i=1;i<=r;i++){
			for(int j=1;j<=c;j++){
				ans.a[i][j]%=t;
			}
		}
		return ans;
	}
	Mat qpow(ll b,ll p){
        Mat ans(r,c),a= *this;
        ans.unit();
        while(b){
            if(b&1)
                ans=ans*a%p;
            a=a*a%p;
            b>>=1;
        }
        return ans%p;
    }
	void print(){//输出
		for(int i=1;i<=r;i++){
			for(int j=1;j<=c;i++){
				printf("%lld ",a[i][j]);
			}
			pr;
		}
	}
};
int main(){
	cin>>n;
	if(n<=2){
		cout<<"1";
		return 0;
	}
	Mat a(2,2);
	a.a[1][1]=a.a[1][2]=1;
	Mat b(2,2);
	b.a[1][1]=b.a[1][2]=b.a[2][1]=1;
	b.a[2][2]=0;
	a=a*b.qpow(n-2,mod)%mod;
	cout<<a.a[1][1];
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值