09-E. DS二叉树——二叉树之数组存储

09-二叉树遍历-

题目描述
二叉树可以采用数组的方法进行存储,把数组中的数据依次自上而下,自左至右存储到二叉树结点中,一般二叉树与完全二叉树对比,比完全二叉树缺少的结点就在数组中用0来表示。,如下图所示
在这里插入图片描述
从上图可以看出,右边的是一颗普通的二叉树,当它与左边的完全二叉树对比,发现它比完全二叉树少了第5号结点,所以在数组中用0表示,同样它还少了完全二叉树中的第10、11号结点,所以在数组中也用0表示。

结点存储的数据均为非负整数

输入
第一行输入一个整数t,表示有t个二叉树

第二行起,每行输入一个数组,先输入数组长度,再输入数组内数据,每个数据之间用空格隔开,输入的数据都是非负整数

连续输入t行


输出
每行输出一个示例的先序遍历结果,每个结点之间用空格隔开

输入样例
3
3 1 2 3
5 1 2 3 0 4
13 1 2 3 4 0 5 6 7 8 0 0 9 10

1 2 3
1 2 4 3
1 2 4 7 8 3 5 9 10 6

提示
注意从数组位置和二叉树深度、结点位置进行关联,或者父子结点在数组中的位置存在某种管理,例如i, i+1, i/2, i+1/2…或者2i, 2i+1…仔细观察哦

#include<iostream>
using namespace std;
void show(int *a,int n,int i)
{
    if(*a)
    {
        cout<<*a<<" ";//访问
        if(2*i+1<n)//左孩子
            show(a+i+1,n,i*2+1);
        if(2*i+2<n)//右孩子
            show(a+i+2,n,i*2+2);
    }
}

int main()
{
    int t,n;
    cin>>t;
    while(t--)
    {
        cin>>n;
        int a[100],i;
        
        for(i=0;i<n;i++)
        cin>>a[i];
        
        show(a,n,0);
        cout<<endl;
    }
    return 0;
}

### 二叉树中的父子节点概念 在二叉树中,父节点(Parent Node)是指拥有至少一个子节点的节点。每个父节点最多有两个子节点,分别被称为子节点(Left Child)和右子节点(Right Child)。对于任意非根节点而言,其必定存在唯一的父节点。 定义如下: - **父节点**:除了根节点外,任何节点都有唯一的一个父节点。 - **子节点**:一个节点可以有零个、一个或两个子节点;这两个子节点分别为子节点和右子节点[^1]。 ### 子节点的具体分类 - 子节点总是位于父节点侧位置; - 右子节点则处于右侧位置; - 如果某个节点既无也无右子节点,则该节点被称为叶子节点(Leaf Node),即终端节点。 ### 使用C语言实现二叉树及其父子关系 下面展示如何通过C语言来创建并初始化一棵简单的二叉树以及设置父子之间的连接方式: ```c #include <stdio.h> #include <stdlib.h> // 定义二叉树节点结构体 typedef struct BinaryTreeNode { char data; struct BinaryTreeNode *left, *right; } BTNode; // 创建新节点函数 BTNode* create_node(char value){ BTNode* newNode = (BTNode*)malloc(sizeof(BTNode)); newNode->data = value; newNode->left = NULL; newNode->right = NULL; return newNode; } int main(){ // 构建简单二叉树实例 BTNode *root = create_node('A'); // A作为根节点 root->left = create_node('B'); // B为A的孩子 root->right = create_node('C'); // C为A的右孩子 root->left->left = create_node('D'); // D为B的孩子 root->left->right = create_node('E'); // E为B的右孩子 printf("Binary Tree Created Successfully!\n"); free(root); // 清理内存分配 } ``` 此代码片段展示了基本的二叉树构建过程,并明确了各个节点间的父子关联。`create_node()` 函数用于生成新的二叉树节点,而 `main()` 中的操作则是按照指定的方式建立了几个具体的父子关系示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值