
教学
文章平均质量分 81
本人在读博士,研究大模型,数据交易,联邦学习领域
总结前言论文以及领域相关问题解决办法。
本人在科研一线,在文章架构设计,公式编辑,图片美化,语言润色。overleaf编辑方面有一定经验,直接订阅后,本人可以协助完成投稿返修;
优惠券已抵扣
余额抵扣
还需支付
¥199.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
ZhangJiQun&MXP
本人在读博士,研究大模型,数据交易,联邦学习领域
每天帮助你们总结前言论文以及个人遇到问题。
投稿Expert Systems with Applications历时4个月;中科院1区顶刊,本人在科研一线,在文章架构设计,公式编辑,图片美化,语言润色。overleaf编辑方面有一定经验,直接订阅后私信本人可以协助完成投稿返修。https://blog.csdn.net/qq_38998213/article/details/146232131?sharetype=blogdetail&sharerId=146232131&sharerefer=PC&sharesource=qq_3899821
展开
-
优化提示词嵌入:提升模型预测准确率
本文介绍了如何使用PyTorch和Hugging Face的transformers库进行文本分析任务。首先,导入必要的库,包括PyTorch和transformers中的AutoTokenizer和AutoModelForCausalLM。接着,加载预训练模型和分词器,并将模型移动到GPU上以加速计算。然后,定义输入文本和目标标签,初始化提示词嵌入向量,并将其转换为可训练参数。使用Adam优化器进行参数优化,并获取标签对应的token ID。最后,通过训练循环不断优化提示词嵌入,计算与词汇表中各词的相似度原创 2025-05-14 17:19:59 · 4 阅读 · 0 评论 -
PyTorch中mean(dim=1)的深度解析
mean(dim=1) 在自然语言处理中用于对token序列的向量表示在序列维度上取平均,将整个序列压缩为单个向量。例如,输入文本经过分词和嵌入后,形成一个三维张量 [batch_size, sequence_length, embedding_dim],mean(dim=1) 会沿序列维度对所有token的向量求平均,得到 [batch_size, embedding_dim] 的张量。这种方法简化了表示,便于后续优化和模型处理,但可能丢失序列信息和语义细节。改进方法包括使用CLS标记或注意力加权平均。原创 2025-05-14 16:46:31 · 3 阅读 · 0 评论 -
`torch.no_grad()`的实际含义:后续运算 不记录 梯度信息
torch.no_grad() 是 PyTorch 中的一个上下文管理器,用于禁用梯度计算,适用于模型推理、评估和固定部分参数等场景。其原理是通过将张量的 requires_grad 属性设为 False,阻止计算图的构建,从而避免不必要的梯度计算和内存占用。在推理阶段,使用 torch.no_grad() 可以显著提升效率,减少资源消耗。未使用该功能时,PyTorch 仍会记录梯度信息,导致计算速度变慢和内存开销增加。正确使用 torch.no_grad() 不仅能优化性能,还能避免潜在的计算错误。原创 2025-05-14 11:25:37 · 4 阅读 · 0 评论 -
词嵌入向量的编码解码:为什么Embeddings与Output Vectors完全相同?
本文探讨了词嵌入向量(Embeddings)与输出向量(Output Vectors)在特定情况下完全相同的原因。通过代码示例,展示了如何使用Hugging Face的transformers库加载模型、进行文本编码、获取词嵌入向量以及解码生成文本。文章指出,当max_new_tokens=1且输入文本较短时,模型的最后一层隐藏状态可能与初始的输入嵌入向量相同,因为模型尚未进行复杂的变换。此外,文章还解释了model.generate函数的作用,以及如何通过tokenizer.decode将生成的token原创 2025-05-14 11:20:34 · 5 阅读 · 0 评论 -
深度学习中.cuda()、.eval()与no_grad详解
本文主要介绍了深度学习模型中的几个关键方法和功能。首先,.cuda()用于将模型或张量从CPU转移到GPU,以加速计算,而.eval()则将模型设置为评估模式,影响如Batch Normalization和Dropout层的行为。torch.no_grad()通常与.eval()配合使用,以禁用梯度计算,节省资源。此外,文章还介绍了AutoModelForCausalLM的常见后缀方法,如.from_config()用于根据配置实例化模型,.generate()用于文本生成,.get_input_embed原创 2025-05-14 10:29:38 · 20 阅读 · 0 评论 -
张 。。 通过Token实现Loss调优prompt
本文介绍了Qwen2模型的文本编码与生成过程,展示了如何使用Hugging Face的transformers库加载模型、进行文本编码、获取词嵌入向量以及生成和解码文本。代码首先加载了Qwen2模型和分词器,并将模型移至GPU以加速计算。接着,通过构建对话格式的输入文本,使用分词器将文本转换为token ID序列,并获取其嵌入向量表示。最后,模型基于输入生成新的文本,并通过分词器将生成的token序列解码为可读的文本。整个过程展示了现代自然语言处理模型从文本到token、再到向量表示,最终生成新文本的核心流原创 2025-05-14 01:11:58 · 8 阅读 · 0 评论 -
思维链实现 方式解析
内部逻辑核心**:思维链代码的关键在于通过**结构化提示**、**多轮交互**或**知识表示**,将复杂问题拆解为可执行的推理步骤,引导模型逐步生成答案。- **应用场景**:适用于数学推理、逻辑问题、知识问答、决策分析等需要多步推导的任务。原创 2025-05-13 23:25:06 · 64 阅读 · 0 评论 -
深度Q网络(DQN)的基本概念
深度Q网络(DQN)是一种结合Q学习和深度学习的强化学习算法,通过神经网络近似Q函数,解决了高维状态空间下的计算难题。其核心要素包括Q函数、贝尔曼方程、经验回放和目标网络。DQN的工作流程包括初始化、与环境交互、训练网络和更新目标网络。以OpenAI Gym的CartPole环境为例,DQN通过状态表示、动作选择、网络结构和训练过程,逐步学习保持杆子平衡的策略,最终达到稳定效果。代码示例展示了DQN的实现,包括网络定义、经验回放缓冲区和智能体训练过程。原创 2025-05-13 23:16:18 · 73 阅读 · 0 评论 -
信息熵和条件熵是什么; 2.585 比特的物理意义
信息熵是衡量随机变量不确定性的指标,通常以比特为单位。例如,一个公平的六面骰子的信息熵约为2.585比特,表示每次掷骰子前对结果的不确定性。信息熵越大,不确定性越高。条件熵则是在已知某些条件下,随机变量的不确定性。原创 2025-05-13 16:50:02 · 261 阅读 · 0 评论 -
互信息与KL散度:差异与应用全解析
信息论核心概念解析互信息与KL散度作为信息论基础工具,在概率分析和机器学习中扮演着重要角色:互信息(Mutual Information)衡量两个随机变量的统计相关性,通过联合分布与边缘分布的乘积之比进行计算具有对称特性,计算结果越大表明变量间关联性越强典型应用场景:特征工程中的变量筛选、多源数据融合分析KL散度(Kullback-Leibler Divergence)表征两个概率分布间的非对称差异量度基于参考分布与目标分布的概率比值构建评估指标原创 2025-05-13 16:42:26 · 175 阅读 · 0 评论 -
互信息:揭秘变量间的隐藏关联
互信息(Mutual Information)是衡量两个随机变量之间依赖关系的指标,通过比较联合概率与边缘概率的差异来量化变量间的信息量。其公式为 $I(X;Y)=\sum_{x\in X}\sum_{y\in Y}P(x,y)\log\frac{P(x,y)}{P(x)P(y)}$。若变量独立,互信息为0;若高度相关,则互信息值较大。对数运算在公式中起到量化信息增益的作用,选择不同的对数底数可改变信息量的单位。互信息在机器学习、信息检索和自然语言处理等领域有广泛应用,如特征选择、文档检索和词语共现分析等。原创 2025-05-13 16:31:42 · 92 阅读 · 0 评论 -
KL散度:量化概率分布差异的利器==预测概率和真实情况的差距
KL散度(Kullback-Leibler Divergence),又称相对熵,用于衡量两个概率分布P和Q之间的差异。其公式为$D_{KL}(P||Q)=\sum_{i}P(x_{i})\log\frac{P(x_{i})}{Q(x_{i})}$,其中$P(x_{i})$和$Q(x_{i})$分别表示真实分布和近似分布中事件$x_{i}$的概率。KL散度通过加权求和来量化两个分布的差异,若P和Q相同,则$D_{KL}(P||Q) = 0$;差异越大,KL散度值越大,且其值始终非负。举例说明,通过计算班级学生原创 2025-05-13 11:08:33 · 12 阅读 · 0 评论 -
信息量是什么:一个事件发生的概率越小,其信息量就越大;反之,概率越大,信息量越小
信息量是衡量信息多少的指标,与事件发生的概率密切相关。事件发生的概率越小,其信息量越大;反之,概率越大,信息量越小。 信息量的计算公式为 ( I(x_i) = -\log_2{P(x_i)} ),单位是比特(bit)。信息熵 ( H(X) ) 则表示随机变量的平均信息量,计算公式为 ( H(X) = -\sum_{i=1}^{n} P(x_i) \log_2{P(x_i)} )。例如,抛硬币出现正面的信息量为1比特,而从一个100个球的盒子中抽到特定球的信息量约为6.64比特,因为后者概率更低,信息量更大。原创 2025-05-12 20:18:04 · 187 阅读 · 0 评论 -
COT思维链:SequentialChain 方法有哪些参数;优化后的提示词
在LangChain库中,SequentialChain类的初始化方法包含多个参数,如chains、input_variables、output_variables、verbose等。此外,还有memory用于传递和保存状态,return_all用于返回所有步骤的输出,input_parser和output_parser用于输入输出的预处理和后处理,validate用于验证输入输出匹配,name和description用于链的命名和描述。这些参数可根据具体需求选择使用。 在心理咨询领域,作为专注理性情绪行为原创 2025-05-11 22:23:39 · 86 阅读 · 0 评论 -
LangChain对话链:打造智能多轮对话机器人
LangChain对话链:打造智能多轮对话机器人ConversationChain 是什么核心功能与特点基本用法示例内存机制自定义提示词应用场景与其他链的结合原创 2025-05-11 14:12:50 · 333 阅读 · 0 评论 -
思维链是仅仅通过提示词实现的吗
思维链是一种模拟人类逻辑思考的推理方式,通过将复杂问题分解为多个步骤来逐步推导答案,强调问题的结构化拆解与逐步推理。提示词在这一过程中起到关键作用,用于引导模型采用思维链推理方式,如“分步骤解答”或提供示例。然而,思维链的构建和运行依赖于模型自身的参数和训练知识,提示词仅是触发和引导的手段。例如,在零样本思维链中,模型仅需初始提示即可自主生成推理步骤,无需持续输入新提示词。因此,思维链是模型内在的复杂推理机制,远超提示词简单输入的范畴。原创 2025-05-11 14:11:45 · 34 阅读 · 0 评论 -
思维连实现方式:多链组合实现多阶段思维链;使用LangChain的Agent框架
调用"thinking"模型实现思维链的方法"thinking"模型通常指具有内置思维链能力或支持显式推理步骤的大型语言模型。调用这类模型实现思维链主要有以下几种方式:原创 2025-05-11 13:02:07 · 108 阅读 · 0 评论 -
思维链框架:LLMChain,OpenAI,PromptTemplate
什么是思维链,怎么实现思维链(Chain of Thought)在代码中的实现方式1. 手动构建思维链提示2. 少样本思维链提示3. 自动思维链生成4. 思维链与工具使用结合5. 使用现有思维链框架:LLMChain,OpenAI,PromptTemplate思维链实现的关键要点原创 2025-05-11 13:01:35 · 141 阅读 · 0 评论 -
智能体博弈论:策略互动与系统均衡
智能体与博弈论的结合通过将智能体视为博弈参与者,利用策略集合与收益函数设计博弈规则,引导智能体在追求自身利益的同时实现系统公平性与稳定性,如交通流量优化中的智能交通灯系统。然而,智能体可能出现不诚信行为,如谎报资源需求或发送错误计算结果。为应对此类行为,奖惩机制的设计需明确目标、公平合理、及时有效,包括基于收益调整、声誉系统和分级奖惩等方法,如在供应链管理中通过积分奖励和信用评级来规范智能体行为。此外,检测大语言模型(LLM)虚假行为的方法包括事实核查、逻辑分析、多轮追问、领域专家评估和幻觉检测技术,以确保原创 2025-05-11 09:11:05 · 27 阅读 · 0 评论 -
Empowering Psychotherapy with Large Language Models: Cognitive Distortion Detection through Diagnosi
论文《Empowering Psychotherapy with Large Language Models: Cognitive Distortion Detection through Diagnosis of Thought Prompting》提出了一种名为诊断性思维(Diagnosis of Thought, DoT)的提示方法,旨在提升大语言模型(LLM)在心理治疗中认知扭曲检测任务中的表现。DoT框架通过三个主要阶段引导LLM对患者话语进行系统分析:主观性评估(区分话语中的客观事实与主观想法)原创 2025-05-11 00:06:44 · 14 阅读 · 0 评论 -
张 SoulChat2.0:心理咨询师优化:提示词优化;构建数据集微调LLM
张 SoulChat2.0 是华南理工大学未来技术学院 - 广东省数字孪生人重点实验室推出的心理咨询师数字孪生大语言模型项目,旨在解决现有心理健康大语言模型未充分考虑心理咨询师个人风格以及多轮对话数据混合微调导致回复不稳定的问题。项目通过构建高质量的心理咨询师数字孪生数据集 PsyDTCorpus,利用大五人格分析和先进语言模型总结技术,生成具有特定咨询师语言风格和疗法技术的多轮对话数据。数据集包含5000个单轮咨询样本,其中4760个用于训练,240个用于测试。模型选用 Qwen2-7b-Instruct原创 2025-05-10 17:37:33 · 111 阅读 · 0 评论 -
基于微信平台的智能心理咨询聊天机器人系统设计与实现
本文设计并实现了一款基于微信平台的智能心理咨询聊天机器人系统,旨在通过自然语言处理和情绪识别等技术提供便捷、个性化的心理咨询服务。系统采用模块化设计,包括微信交互、用户状态管理、核心功能及配置参数管理等模块,确保高效运行和用户体验。通过实验验证,系统在用户满意度和响应时间方面表现良好,满意度达80%,平均响应时间为15秒。未来工作将着重优化模型性能和增加情绪识别功能,以进一步提升系统效能,推动智能心理咨询技术的发展。原创 2025-05-10 11:41:30 · 35 阅读 · 0 评论 -
Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents ; DPO:直接偏好优化
Agent Q框架旨在提升大语言模型(LLMs)在交互式多步推理任务中的表现,通过结合引导蒙特卡罗树搜索(MCTS)、自我批判机制和迭代微调,增强自主智能体的推理和决策能力。该框架将网络交互视为部分可观测马尔可夫决策过程(POMDP),并通过强化微调(RFT)和直接偏好优化(DPO)等方法优化模型策略。DPO损失函数通过最小化模型生成策略与参考策略在偏好对比较中的差异,提升模型在零样本任务中的性能。实验表明,Agent Q在WebShop和OpenTable等真实场景中显著提升了模型的成功率,零样本成功率从原创 2025-05-10 00:59:46 · 90 阅读 · 0 评论 -
损失函数与准确率的非线性关系解析
在机器学习中,损失函数(loss)和批次(batch)是训练模型时的关键概念。损失函数衡量模型预测值与真实值之间的差异,通常损失越小,模型预测越准确,准确率越高。然而,损失和准确率并非严格线性关系,训练初期损失可能迅速下降,而准确率提升较慢。常见的损失函数包括均方误差(MSE)、交叉熵损失和绝对值损失等,分别适用于回归和分类任务。 在训练过程中,批次大小(batch size)影响参数更新的频率。较小的批次(如batch=5)意味着更频繁的参数更新,而较大的批次则更新间隔较长。训练流程包括正向传播和反向传播原创 2025-05-10 00:25:13 · 125 阅读 · 0 评论 -
豆包:基于多模态交互的智能心理咨询机器人系统设计与效果评估——情感计算框架下的对话机制创新
本文提出了一种基于多模态交互的智能心理咨询机器人系统“豆包”,融合情感计算与动态对话管理,旨在解决全球心理健康需求激增与专业咨询师资源短缺的矛盾。系统采用“用户状态-情感响应-策略生成”三层模型,结合自然语言处理与异步交互技术,提供个性化情感支持。实验结果表明,系统在情感识别准确率(89.7%)、用户满意度(4.82/5)和对话连贯性(F1值0.85)等关键指标上显著优于基线模型。系统通过微信生态实现低成本部署,具备规模化应用潜力,为AI心理咨询的工程化应用提供了理论与技术支撑。未来研究可聚焦多模态融合与长原创 2025-05-10 00:04:16 · 344 阅读 · 0 评论 -
5级李克特量表:量化态度的黄金标准
5级李克特量表是一种广泛应用于心理学和社会科学的态度测量工具,通过5个等级(如“非常不同意”到“非常同意”)量化受访者对某一主题的同意程度或感受强度。其核心特征包括单维测量、量化分析以及操作简便性。量表结构通常由陈述句或问题组成,受访者根据自身感受选择对应等级,分值范围为1到5分。5级李克特量表适用于多种场景,如用户满意度调查、心理咨询效果评估等,并能通过描述性统计、相关性分析等方法进行数据分析。与其他量表相比,5级李克特量表在测量深度和易用性之间取得平衡,广泛应用于学术研究和实践调查中。原创 2025-05-09 12:04:07 · 53 阅读 · 0 评论 -
怎样使用BERT模型获取“中国首都”的词向量编码
要使用BERT模型获取“中国首都”的词向量编码,首先需要导入相关库并加载预训练的BERT模型和分词器。接着,对输入文本进行分词并将其转换为模型可接受的格式,如id序列。将处理后的输入传递给模型,获取词向量,通常取最后一层隐藏层的输出作为词向量。最终的输出形状为(1, 6, 768),其中1表示批次大小,6表示序列长度(包括特殊标记),768表示隐藏层维度。这一过程确保了文本能被模型高效处理,同时保留语义和结构信息。原创 2025-05-09 08:44:43 · 104 阅读 · 0 评论 -
高拟人化客服机器人显著提升用户接受度
高拟人化客服机器人显著提升用户接受度,且与真人客服无显著差异**,其作用通过**胜任感中介效应**实现;**购房动机具有调节作用**,自住动机下高拟人化更有效,投资动机下低拟人化更受认可。研究为平台设计提供策略:一般场景采用高拟人化,结合视觉、身份、言语线索优化;针对自住用户强化情感化设计,投资用户侧重理性信息支持。原创 2025-05-09 08:30:02 · 157 阅读 · 0 评论 -
机器人领域和心理学领域 恐怖谷 是什么
这种情感变化就像经历了一个山谷,从对机器人逐渐增加的好感,到在某个节点急剧下降,所以被称为“恐怖谷”。恐怖谷是一个在机器人领域和心理学领域备受关注的概念,由日本机器人专家森政弘于1970年提出。当机器人与人类的相似度达到一定程度时,原创 2025-05-08 13:00:39 · 395 阅读 · 0 评论 -
无实体对话式社交机器人 拟人化印象形成机制:基于多模态交互与文化适配的拓展研究
该研究通过严谨的实验设计,揭示了无实体对话机器**人拟人化对印象形成的积极影响及内在机制,**为理解智能传播时代的人机关系提供了新视角,也为AI对话系统的优化设计提供了理论依据。本研究在张放与徐子涵(2024)关于无实体对话机器人“反恐怖谷效应”的实验基础上,引入多模态交互维度与跨文化比较视角,通过2×2×2混合实验设计(拟人化程度×对话情境×文化背景),探究视觉、语音线索对人机印象形成的强化效应及文化适配机制。原创 2025-05-08 12:58:13 · 301 阅读 · 0 评论 -
Python `zip()` 函数是什么
是一个内置函数,其主要作用是将多个可迭代对象(像列表、元组、字符串等)中的元素一一对应地组合成元组,最终返回一个迭代器,这个迭代器会生成这些元组。函数接收了三个列表作为参数,将它们对应位置的元素组合成了包含三个元素的元组。中对应位置的元素,这样就能同时处理两个列表中对应位置的元素了。函数会以最短的可迭代对象的长度为准,多余的元素会被忽略。代表可变数量的可迭代对象,意味着你可以传入任意数量的。这两个列表中的元素按顺序配对,在每次循环时,生成的元组会被依次解包,分别赋值给。中的元素按顺序配对,形成了元组。原创 2025-05-08 12:23:51 · 29 阅读 · 0 评论 -
什么是:Word2Vec + 余弦相似度
什么是:Word2Vec + 余弦相似度示例文本基于Word2Vec的文本向量化计算余弦相似度Word2Vec不是基于Transformer架构的原创 2025-05-08 11:16:56 · 81 阅读 · 0 评论 -
什么是文本相似对比算法,原理是什么
什么是文本相似对比算法,原理是什么编辑距离算法余弦相似度算法词频向量确定:两个向量怎么获取的,向量长度:按长的句子出现词语数量确定其他常见且有效的文本相似对比算法 :J,accard相似度算法,Smith-Waterman算法原创 2025-05-08 11:13:07 · 173 阅读 · 0 评论 -
张 微信智能心理咨询师实现逻辑
张 微信智能心理咨询师实现逻辑缓存机制修正增加用户信息记录每次提取新的历史会话总结。不使用缓存提示词优化原创 2025-05-08 00:19:23 · 164 阅读 · 0 评论 -
Paper2Code是什么:科学论文自动转换为可运行的代码
Paper2Code是韩国科学技术院和DeepAuto.ai联合推出的多Agent大语言模型(LLM)框架,旨在将机器学习领域的科学论文自动转换为可运行的代码仓库。原创 2025-05-07 23:04:15 · 54 阅读 · 0 评论 -
词编码模型和回答问题的LLM是否为同一个; 词编码模型和回答问题模型分开时:需要保证词嵌入维度一致吗
词编码模型和回答问题的LLM是否为同一个二者为同一模型的情况二者为不同模型的情况词编码模型和回答问题模型分开时:需要保证词嵌入维度一致吗需要保证词嵌入维度一致的原因特殊情况豆包采用什么模式一体化的设计架构模型的优势原创 2025-05-07 17:37:49 · 104 阅读 · 0 评论 -
LLM词编码机制:文字映射,词嵌入
文字映射:把文本拆分成单个的词元(tokens),同时将这些词元映射为对应的整数ID。词嵌入:借助词嵌入层,把词元ID转换为高维向量。高维空间编码:利用嵌入向量开展后续任务,例如输入到神经网络里。原创 2025-05-07 17:32:46 · 104 阅读 · 0 评论 -
LLM词编码机制:词映射
整体是一个二维数组,这是因为在处理批量输入时,每个子数组代表一个输入文本的编码。这里只有一个输入“中国首都”,所以只有一个子数组。用于区分不同句子的词元。在 BERT 中,通常用于处理两个句子的输入场景,例如问答任务中区分问题和答案。表示该位置是填充的,模型会忽略它。这里 array([[1, 1, 1, 1, 1, 1, 1]])表示该位置是真实的词元,模型在计算注意力机制时会考虑它;用于指示哪些词元是真实的输入,哪些是填充的。可能是分词时某些部分未在词表中找到对应。是将输入文本分词后,每个。原创 2025-05-07 17:27:42 · 36 阅读 · 0 评论 -
Unicode和UTF - 8主要有以下区别
- **Unicode**:是字符集 。它为世界上几乎所有的字符(包括各国文字、标点符号、特殊符号等)分配了唯一的编号,这个编号也叫码位、码点,**比如“中”字的Unicode码点是U+4E2D 。它规定了字符的抽象表示,只关注字符与数字编号的对应关系**,不涉及具体如何在计算机中存储和传输 。- **UTF - 8**:是编码规则 。它规定了如何将**Unicode中的码点转换为字节序列,也就是确定了字符在计算机中实际存储和传输时的二进制形式**。原创 2025-05-07 16:16:32 · 33 阅读 · 0 评论 -
不同大模型对提示词和问题的符号标识
花括号{}的定位:是编程和数据格式的通用符号,非大模型提示词的标准分隔符。核心建议简单任务:用自然语言+换行即可。复杂任务:根据模型特性选择符号(Claude用XML,GPT用###动态填充:用{}作为模板变量,但需在代码中预先格式化。通过合理选择符号并结合模型特性,可显著提升提示词的清晰度和模型响应的准确性。不存在绝对通用的格式,但可通过以下策略实现跨模型兼容基础结构:系统提示+用户输入,用分隔符(如###)分段。动态填充:代码中使用{}模板变量,预先格式化。示例引导。原创 2025-05-07 12:58:49 · 104 阅读 · 0 评论