动态规划(四)--最长公共子序列

最长公共子序列问题
一种相似度的概念;一个给定的序列的子序列是将序列中零个或多个元素去掉之后得到的结果。
定义:给定一个序列X=<x1,x2,。。。,xm>,另一个序列Z=<z1,z2,...,zk>满足如下条件时称为X
的子序列。即存在一个严格递增的X的下标序列<i1,i2,...,ik>,对所有j=1,2,...,k,满足xij=zj,

问题描述: 给定两个序列X=<x1,x2,。。。,xm>和Y=<y1,y2,...,yn>,求X和Y的长度最长的公共子序列。

根据第一篇的理论,
Step 1:刻画最长公共子序列的特征
    LCS的最优子结构
        定理:   
             令X=<x1,x2,。。。,xm>和Y=<y1,y2,...,yn>为两个序列,Z=<z1,z2,...,zk>为X和Y的任意LCS。
            1.若Xm = Yn,则zk = xm=yn且Zk-1是Xm-1和Yn-1的一个LCS。
            2.若Xm不等于Yn,那么Zk不等于Xm,意味着Z是Xm-1和Y的一个LCS。
            3.若Xm不等于Yn,那么Zk不等于Xm,意味着Z是Xm和Y的一个LCS。
    上述定力告诉我们,两个序列的LCS包含两个序列的前缀的LCS,因此LCS问题具有最优子结构。

Step 2 : 一个递归解
在求解X=<x1,x2,。。。,xm>和Y=<y1,y2,...,yn>的一个LCS时,我们需要求解一个或两个子问题,如果Xm=Yn,我们应该求解Xm-1和Yn-1的一个LCS。将Xm=Yn追加到这个LCS的末尾,就得到X和Y的一个LCS。若Xm不等于Yn,我们必须求解两个子问题:求Xm-1和Y的一个LCS与X和Yn-1的一个LCS;两个LCS较长者即为X和Y的一个LCS。
定义c[i][j]表示Xi和Yj的LCS的长度可得以下公式
                                      {  0                                         若i=0或j=0
                        c[i][j] =  {c[i-1][j-1] + 1                       若i,j>0且Xi=Yj
                                      {max(c[i][j-1],c[i-1][j])           若i,j>0且xi≠Yj
Step 3:计算LCS的长度及构造LCS
自底向上方法,先生成一张表,再根据表中元素所指的方向迭代出最长子序列
/**
 * @author BiangHoo
 *
 * 2013年9月11日
 */
public class LCS {

	public static void main(String[] args) {
			String X[] = {"A","B","C","B","D","A","B"};
			String Y[] = {"B","D","C","A","B","A"};
			LCS_Length(X,Y);

	}
	static void display(String array[][]){
		for(int i=0;i<array.length;i++){
			for(int j=0;j<array[0].length;j++){
				System.out.print(array[i][j]+" ");
			}
			System.out.print("\n");
		}
		
		System.out.print("\n"+"the LCS is: ");
	}
	static void LCS_Length(String X[],String Y[]){
		
		int xlen = X.length;
		int ylen = Y.length;
		
		String b[][] = new String[xlen+1][ylen+1];
		int c[][] = new int[xlen+1][ylen+1];
		for(int i=0;i<xlen+1;i++){
			c[i][0] = 0;
		}
		for(int i=0;i<ylen+1;i++){
			c[0][i] = 0;
		}
		
		for(int i=1;i<xlen+1;i++){//bottom to top
			for(int j=1;j<ylen+1;j++){
				if(X[i-1]==Y[j-1]){
					c[i][j] = c[i-1][j-1]+1;
					b[i][j] ="arrow";
				}else if(c[i-1][j] >= c[i][j-1]){
					c[i][j] = c[i-1][j];
					b[i][j] = "up";
				}else{
					c[i][j] = c[i][j-1];
					b[i][j] = "left";
				}
				
			}
		}
		display(b);
		Print_LCS(b,X,xlen,ylen);
	}
	
	static void Print_LCS(String [][] b,String[]X,int i,int j){
		if(b[i][j] == null){
			return ;
		}
		if(b[i][j] == "arrow"){
			Print_LCS(b,X,i-1,j-1);
			System.out.print(X[i-1]+" ");
		}else if(b[i][j] == "up"){
			Print_LCS(b,X,i-1,j);
		}else{
			Print_LCS(b,X,i,j-1);
		}
	}
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长公共子序列问题(Longest Common Subsequence,简称LCS)是指在两个序列中找到一个最长的公共子序列,其中一个序列的所有元素按原序列中出现的顺序排列,而另一个序列中的元素则不要求按原序列中出现的顺序排列。 动态规划方法可以很好地解决LCS问题。设A和B是两个序列,LCS(A,B)表示A和B的最长公共子序列。则可以设计如下的状态转移方程: 当A和B的末尾元素相同时,LCS(A,B) = LCS(A-1,B-1) + 1。 当A和B的末尾元素不同时,LCS(A,B) = max(LCS(A-1,B), LCS(A,B-1))。 其中,LCS(A-1,B-1)表示A和B的末尾元素相同时的情况,LCS(A-1,B)表示A的最后一个元素不在最长公共子序列中,而B中的最后一个元素在最长公共子序列中的情况,LCS(A,B-1)表示B的最后一个元素不在最长公共子序列中,而A中的最后一个元素在最长公共子序列中的情况。 根据这个状态转移方程,可以使用动态规划算法来求解LCS问题。具体方法是,构建一个二维数组dp,其中dp[i][j]表示A前i个元素和B前j个元素的LCS。初始化dp[0][j]和dp[i][0]为0,然后按照上述状态转移方程进行递推,最终得到dp[lenA][lenB],其中lenA和lenB分别表示A和B的长度。dp[lenA][lenB]即为A和B的最长公共子序列的长度。要找到具体的最长公共子序列,可以从dp[lenA][lenB]开始,按照状态转移方程反向推导出每个元素,即可得到最长公共子序列。 LCS问题是动态规划算法的经典应用之一,时间复杂度为O(n*m),其中n和m分别为A和B的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值