回溯法(Back-Tracking Algorithms)

回溯法是一种用于解决最优化问题的选优搜索技术,通过不断尝试和回溯来寻找可行解。本文介绍了回溯法的概念,并通过N皇后问题作为示例解释其工作原理。N皇后问题要求在一个N×N的棋盘上放置N个皇后,使得皇后之间不能互相攻击。此外,还提供了一个练习:子集和问题,即给定一个整数数组和目标和,找出所有可能的子集组合使得其和等于目标值。通过排序后的回溯法可以有效地解决此类问题。
摘要由CSDN通过智能技术生成

回溯法

回溯法是一种类似于分治的设计技术,用来求解最优化问题并寻求可行方案。
代码链接

回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

在回溯法中,可以把所有的路径看作一棵树,在这棵树中,结点有三种:

  • 活结点:子结点还不确定的结点;
  • 扩展结点:所有子结点未全部确定的结点;
  • 死结点:所有子结点都已确定的结点。

下面是回溯法的经典例子:N皇后问题。

N皇后问题

假定一个N×N大小的棋盘,有N个皇后,要把N个皇后放置在棋盘上,且每个皇后上下左右和对角线都没有其他皇后,该如何放置呢。

假设N=4,下图为4皇后的问题生成树:
这里写图片描述
在该树列举了所有可能的摆放情况,如果一个一个遍历查找满足条件的情况,时间复杂度为N^N^,是不现实的,可以从根节点开始,往下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值