模型评估指标知识整理

基础知识

  • 统计项
    • TP:预测y‘=1,预测正确,即实际y=1
    • FP:预测y‘=1,预测错误,即实际y=0
    • FN:预测y‘=0,预测错确,即实际y=1
    • TN:预测y‘=0,预测正确,即实际y=0
    • P代表预测结果为1,N代表预测结果为0,T代表预测正确,F代表预测错误
    • 1代表正样本,0代表负样本,本文后续不做说明
    • sklearn.metrics.confusion_matrix可以直接输出上述统计项,输出格式是:
预测0预测1
实际0TNFP
实际1FNTP
  • 统计指标

    指标名称统计方式概率表示python
    acc准确率(TP+TN)/(TP+FP+FN+TN)sklearn.metrics.accuracy_score
    precision精准率,精确率,查准率TP/(TP+FP)p(y=1|y’=1)sklearn.metrics.precision_score
    TPR(recall)召回率,真阳率,真正率,查全率,灵敏度TP/(TP+FN)p(y’=1|y=1)sklearn.metrics.recall_score
    FPR假阳率,假正率,1-特异度FP/(FP+TN)p(y’=1|y=0)
    TNR特异度,真负率TN/(FP+TN)p(y’=0|y=0)
    FNR假负率FN/(TP+FN)p(y’=0|y=1)
    • 要注意准确率(acc)和精确率(precision)的差别,只一字之差,但含义完全不一样,前者是所有样本的预测准确率,而后者只是看正样本的预测精确率
    • sklearn.metrics.classification_report,可以直接输出precision,recall,F1(下面说明),以及support(相应类别的样本数)

综合评价指标

  • F1值

    • F 1 = 2 ∗ p r e c i s i o n ∗ r e c a l l / ( p r e c i s i o n + r e c a l l ) F1=2 * precision * recall/(precision+recall) F1=2precisionrecall/(precision+recall),查全率和查准率的调和平均值,两个值同时大的时候,F1才会值比较大
    • 业务解释
      • 高精度(查准率)+高召回率(查全率):模型能够很好地检测该类;
      • 高精度(查准率)+低召回率(查全率):模型不能很好地检测该类,但是在它检测到这个类时,判断结果是高度可信的;
      • 低精度(查准率)+高召回率(查全率):模型能够很好地检测该类,但检测结果中也包含其他类的点;
      • 低精度(查准率)+低召回率(查全率):模型不能很好地检测该类。
    • sklearn.metrics.f1_score
    from sklearn.metrics import f1_score
    print(f1_score(y_true, y_pred))
    
  • ROC曲线

    • 横坐标:FPR(假阳率);纵坐标:TPR(recall,真阳率)
    • 计算方式:先将样本按照模型输出的概率进行降序排序,然后从大到小选择阈值(根据样本的输出概率值,大于阈值的为正样本,小于的则为负样本),每次选择一个阈值就可以根据该阈值计算当前的TPR和FPR,于是得到了一个ROC曲线的点。
    • ROC-AUC(一般简称AUC):ROC曲线下面的面积,可用于表达该模型在不同阈值的情况下的综合效果。ROC曲线的对角线(此时AUC=0.5)代表的是随机猜测的效果,此时正负样本在每个阈值分段范围内都是均匀分布的,即数量相同)。ROC-AUC代表着分别随机从正负样本集中抽取一个正样本,一个负样本,正样本的预测值大于负样本的概率。具体计算ROC-AUC值有更简洁的办法,参考AUC计算方法总结
      绘制ROC
    from sklearn.metrics import roc_curve
    from sklearn.metrics import roc_auc_score
    import matplotlib.pyplot as plt
    fpr, tpr, thresholds = roc_curve(y, scores, pos_label=1) # pos_label可用于指定正样本
    plt.plot(tpr,fpr) # 画ROC曲线
    print(roc_auc_score(y, scores, pos_label=1)) # 计算ROC-AUC值
    
  • PRC曲线(或者叫PR曲线)

    • 横坐标:TPR(recall);纵坐标:precision
    • PRC-AUC(可简称PR值):PRC曲线下方的面积也可以用来代表模型效果,实际sklearn中的实现并不是计算的真的面积。
    • average_precision_score
    from sklearn.metrics import average_precision_score
    from sklearn.metrics import precision_recall_curve
    import matplotlib.pyplot as plt
    precisions,recalls,thresholds=precision_recall_curve(y_true,y_score, pos_label=1)
    plt.plot(precisions,recalls) # 画PR曲线
    print(average_precision_score(y_true,y_score, pos_label=1)) # 计算PRC-AUC,实际上计算的是AP(average precision)值
    
  • PRC-AUC VS ROC-AUC

    1. PRC-AUC会受到正负比例的影响,即模型不变的情况下,测试样本的正负比例会影响其值,而ROC-AUC不会。
    2. 在正负比例不平衡的情况下,ROC-AUC会给出相对乐观的估计,而PRC-AUC不会。此时ROC-AUC也可以用于模型对比
    • PRC-AUC比ROC-AUC更好,本质上不是因为样本数量不平衡,而是损失函数L(y,y’)中L(y=0,y’=0)=0 ,也就是true negative是没有价值的(曲线不同位置的面积并不能简单等价)。这种情况你需要做的是明确你需要的recall/precision的 tradeoff应该是多少,这种情况下当然PRC更好用。
    • 直观理解:ROC曲线的横轴采用FPR,纵轴采用TPR,在类别不平衡的背景下,当负例N的数量远超正例P时,FP的大幅增长只能换来FPR的微小改变,而TPR跟负样本无关。结果是虽然大量负例被错判成正例,在ROC曲线上却无法直观地看出来,因此给出了一个非常乐观的估计。(当然也可以只分析ROC曲线左边一小段)
  • 多分类中average参数的使用

    • 二分类中该参数会被忽略
    • 宏平均(macro):先对每个类别单独计算目标值(如F1),再取这些值的算术平均值作为全局指标。
    • 微平均(micro):先累加计算各个类别的TP、TN、FP、FN的值,再由这些值求出目标值(如F1)
    • 由两种平均的计算方式不难看出,宏平均平等对待每一个类别,所以它的值主要受到稀有类别的影响,而微平均平等考虑每个样本,所以它的值受到常见类别的影响比较大

指标选择

一切都要以业务优化方向为指导目标,脱离业务谈指标基本上都是耍无赖

  1. 所有样本都要求准确,重要性完全一样:用准确率acc
  2. 更看重正样本的召回率,那么召回率大于精确率(查全率)(或大于指定业务阈值)作为限制条件,再比较F1(模型筛选阶段使用PR值作为参考)。比如欺诈检测
  3. 更看重正样本的精确率(查全率),那么精确率(查全率)大于召回率(或大于指定业务阈值)作为限制条件,再比较F1(模型筛选阶段使用PR值作为参考)。比如垃圾邮件过滤
  4. 如果最终业务目标是排序,那么选择ROC-AUC。比如点击率预估
  5. 如果最终的业务出现正负比例随着时间(或其他因素)变化,那么选择ROC-AUC。比如点击率预估
参考文献

精确率、召回率、F1 值、ROC、AUC 各自的优缺点是什么?
pr-curve
机器学习之类别不平衡问题 (2) —— ROC和PR曲线
分类问题模型的评估
如何理解机器学习和统计中的AUC?
评估分类模型
AUC计算方法总结

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 要自己训练知识模型库,需要以下步骤: 1. 收集数据:需要从各种来源(例如网站、文档、论文等)收集相关数据,以便训练模型。数据应该是有关主题的,并且应该包含各种类型的信息,例如文本、图像和视频。 2. 数据清洗:收集的数据需要进行清洗,以去除不必要的信息和噪声,并将其转换为可用于训练的格式。 3. 特征提取:从数据中提取有用的特征,以帮助模型理解和分类信息。 4. 训练模型:使用机器学习算法和深度学习框架,训练模型以识别和分类输入数据。 5. 评估模型:使用测试数据集对模型进行评估,以确定其准确性和可靠性。 6. 调整模型:根据评估结果,对模型进行调整和优化,以提高其性能。 7. 部署模型:将训练好的模型部署到实际应用中,让用户可以使用它来获取有用的信息。 总之,自己训练知识模型库需要一定的技术和资源,但是可以根据自己的需求和兴趣,训练出符合自己需求的模型。 ### 回答2: 自己训练知识模型库需要从以下几个步骤入手。 首先,确定知识模型库的主题。根据自己的需求和兴趣,选择一个特定的领域或主题,这样可以更好地专注于相关知识的获取和整理。 接着,搜集相关的知识和数据。通过阅读专业书籍、学术论文、网络资源等,积累尽可能多的相关知识。同时,收集相关的数据集,包括文本、图像、音频等,作为模型训练的输入。 在搜集到足够的知识和数据后,需要对这些内容进行处理和整理。可以使用自然语言处理和数据清洗技术来对文本进行分词、去除噪声、拼写纠错等处理,确保输入的数据质量和一致性。 接下来,选择适合的机器学习算法和模型架构。根据具体的任务和数据特点,选择相应的算法和模型,如文本分类、图像识别、语音识别等。可以使用现成的机器学习框架进行模型的搭建和训练,如TensorFlow、PyTorch等。 在模型训练过程中,要进行合理的参数调优和交叉验证,以提高模型的性能和泛化能力。同时,可以考虑使用迁移学习等技术,将已有的模型在新任务上进行微调,以减少训练时间和提高效果。 最后,对训练好的模型进行评估和部署。通过测试数据集和指标,评估模型在新数据上的表现。如果表现良好,可以将模型部署到实际应用中,实现对新数据的预测、分析和推荐等功能。 总的来说,自己训练知识模型库需要明确目标、搜集资料、数据处理、选择算法、模型训练、参数调优、评估部署等一系列步骤,通过不断地迭代和改进,提高模型的效果和应用价值。 ### 回答3: 要训练自己的知识模型库,首先需要确定模型库的目标和范围。然后,按照以下步骤进行训练: 1. 收集和整理数据:收集与目标领域相关的数据,包括文本、图像、音频等,并进行数据清洗和整理,确保数据的质量和一致性。 2. 标记和注释数据:对收集到的数据进行标记和注释,以便将其用于模型训练。标记和注释可以包括分类、实体识别、关系提取等任务。 3. 建立训练集、验证集和测试集:将标记好的数据划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于调整模型的超参数和进行模型选择,测试集用于评估模型的性能。 4. 选择适当的算法和模型结构:根据目标领域的特点和需求,选择适合的算法和模型结构。常用的算法包括传统的机器学习算法(如决策树、支持向量机等)和深度学习算法(如循环神经网络、卷积神经网络等)。 5. 进行模型训练:使用训练集对选择的模型进行训练,通过迭代优化模型参数,使得模型能够很好地拟合训练数据。可以使用常见的训练技巧,如批量归一化、正则化等,以提升模型的性能。 6. 模型调优和验证:使用验证集对训练好的模型进行调优,通过调整超参数、网络结构等方式获得更好的性能。同时,定期使用验证集评估模型的性能,确保模型的泛化能力和稳定性。 7. 模型测试和部署:使用测试集对训练好的模型进行测试,评估其在真实场景中的性能。如果模型达到了预期效果,可以将其部署到实际应用中,实现对新数据的预测和分析。 8. 持续迭代和改进:随着领域知识的不断积累和技术的进步,不断对模型进行迭代和改进,以适应不断变化的需求和挑战。 通过以上步骤,可以逐步搭建和训练自己的知识模型库,提高对目标领域的理解和应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值