问题描述
   给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
 输入格式
   输入的第一行为一个整数n,表示棋盘的大小。
   接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
 输出格式
   输出一个整数,表示总共有多少种放法。
 样例输入
 4
 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1
 样例输出
 2
 样例输入
 4
 1 0 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1
 样例输出
 0
分析:
 2n皇后问题,解决这个先要知道n皇后问题的解法。下面我们先介绍一下n皇后问题。
n皇后问题是有nxn的棋盘,有n个皇后,皇后与皇后之间不能在同一行,同一列,以及对角线上。问皇后能有多少种排列方式(皇后都是一样的)。
我们采用两个函数,一个函数判断皇后在这个位置上是否合法(是否同行,是否同列,是否对角线)。
另一个函数用来深搜,搜到一条符合条件的路线,把路线加到一个列表。(我也说不清楚,可以debug代码,然后看到一步一步是怎么递归的)先给一个n皇后问题的代码:
n皇后代码:
n = int(input())
ans = []
temp_W = [None for i in range(n)]
def valid_W(temp_W,row):
    for j in range(row):
        if abs(j-row) == abs(temp_W[row]-temp_W[j]) or temp_W[row] == temp_W[j]:
            return False
    return True
def dfs_W(temp
                
                  
                  
                  
                  
本文探讨了2n皇后问题,要求在有禁放位置的棋盘上放置n个黑皇后和n个白皇后,确保两者互不冲突。首先介绍了n皇后问题的基本思路,包括判断皇后位置合法性及深度优先搜索。接着,讨论如何在2n皇后问题中扩展n皇后的解法,通过递归放置白皇后和黑皇后来找到所有可能的排列。最后,给出了样例输入和输出以及AC代码。
          
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            