百度百科对于组合数的定义是:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。
由于经常遇到一些组合数问题,所以整理一些常见的快速求组合数的方法,附上Python的实现代码。
一、m,n不是特别大的时候:
( n m ) = n ! m ! ∗ ( n − m ) ! \binom {n}{m}=\frac {n!}{m!*(n-m)!} (mn)=m!∗(n−m)!n!
可以直接调用math.factorial求得阶乘,然后算出组合数,如下:
import math
n,m = map(int,input().split())
print(math.factorial(n)//(math.factorial(m)*math.factorial(n-m)))
输入:
5 3
输出:
10
二、用定义式递归:
( n m ) = ( n − 1 m − 1 ) + ( n − 1 m ) \binom {n}{m}=\binom {n-1}{m-1}+\binom {n-1}{m} (mn)=(m−1n−1)+(mn−1)
递归出口就在于当n=m或者m=1的时候。
n,m = map(int,input().split())
def rec(n,m):
if m == n:
return 1
elif m == 1:
return n
else:
return rec(n-1,m-1)+rec(n-1,m)
print(rec(n,m))
输入:
10 3
输出:
120
三、逆元+快速幂思想参考大佬
前面的两种方法,在n,m数字很大的时候,运行时间会很长。在介绍第三个方法之前,先来介绍几个概念,不当之处,欢迎指点。
(1)、同余定理
百度百科:同余定理数论中的重要概念。给定一个正整数m,如果两个整数a和b满足a-b能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作a≡b(mod m)。对模m同余是整数的一个等价关系。
5 ≡ 3(mod 2) #5和 3对模2同余
(2)、模的加减乘除运算
取模运算的等价变形适合加法、减法、乘法
( a + b ) % p = ( a % p + b % p ) % p (a + b) \% p = (a \% p + b \% p) \% p