给你一个 非空 整数数组 nums
,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。
示例 1 :
输入:nums = [2,2,1] 输出:1
示例 2 :
输入:nums = [4,1,2,1,2] 输出:4
示例 3 :
输入:nums = [1] 输出:1
提示:
1 <= nums.length <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
- 除了某个元素只出现一次以外,其余每个元素均出现两次。
思路:
-
看到这一题的要求,我第一时间想到的就是哈希表,使用哈希表存储每个数字和该数字出现的次数。遍历数组即可得到每个数字出现的次数,并更新哈希表,最后遍历哈希表,得到只出现一次的数字,可是空间复杂度O(n),题目描述只允许使用常量额外空间。
-
这里有一个特点,数组中整数出现一次只有一个,其他数据均出现两次,那么异或操作就能大显神威了,空间复杂度O(1),时间复杂度O(n)。大家不要忘了最底层的一些知识,有时可能是神之一笔。
解法一:哈希表(空间复杂度O(n))
c++:
class Solution {
public:
int singleNumber(vector<int>& nums) {
unordered_map<int,int> mp;
for(auto &i:nums){
mp[i]++;
}
for(auto i:mp){
if(i.second==1) return i.first;
}
return 0;
}
};
java:
class Solution {
public int singleNumber(int[] nums) {
Map<Integer,Integer> map = new HashMap<>();
for(int i :nums){
map.put(i,map.getOrDefault(i,0)+1);
}
for(int i :map.keySet()){
if(map.get(i)==1) return i;
}
return 0;
}
}
解法二:异或运算(空间复杂度O(1))
int singleNumber(int* nums, int numsSize){
int res = nums[0];
for(int i = 1;i<numsSize;i++){
res^=nums[i];
}
return res;
}